

Quantlab 3.1.1
¦ǎŜǊΩǎ Ƴŀƴǳŀƭ

Last update: 2018-05-03

© 2012-2020 Algorithmica Research AB. All rights reserved.

Page 2

Algorithmica Research AB reserves the right to make
changes to the information contained herein without
prior notice.

No part of this document may be reproduced, copied,
published, transmitted, or sold in any form or by any
means without the expressed written permission of
Algorithmica Research AB.

Quantlab® and Algorithmica are trademarks or registered
trademarks of Algorithmica Research AB in Sweden and
other countries. Other product or company names
mentioned herein may be the trademarks of their
respective owners.

Page 3

1 Introduction ... 7

1.1 What is the Quantlab system? .. 7

1.2 Quantlab on-line function browser ... 8

1.3 Contents of this document ... 8

2 Development environment ... 9

2.1 Starting and quitting Quantlab ... 9

2.1.1 Starting Quantlab .. 9

2.1.2 Quitting Quantlab .. 9

2.2 Quantlab workspace .. 10

2.3 Workspace tools .. 11

2.3.1 Workspace browser ... 11

2.3.2 Expression editor ... 11

2.3.3 Function browser ... 13

2.3.4 Real time Quotes browser ... 14

2.3.5 Messages - warnings and compiler errors ... 15

2.3.6 Progress list .. 15

2.4 Setting preferences (Tools) ... 16

2.4.1 Database options ... 16

2.4.2 In tab General: ... 16

2.4.3 In tab Extended:... 17

2.4.4 In tab Messages: .. 17

2.4.5 In tab Table: ... 17

2.4.6 In tab Edit (for the expression editor): .. 17

3 Programming in Quantlab using QLang .. 18

3.1 Introduction ... 18

3.2 A simple example ... 18

3.3 Keyword list ... 19

3.4 Functions ... 21

3.4.1 Standard function definition ... 21

3.4.2 Compact function definition .. 22

3.4.3 Instances of functions .. 22

3.4.4 Function parameters ... 22

3.4.5 Calling functions .. 23

3.4.6 Function pointers ... 24

3.5 Local and global variables ... 25

Page 4

3.6 Operators .. 25

3.7 Data types .. 26

3.7.1 Basic types ... 26

3.7.2 Object types and member functions ... 27

3.7.3 Creating new classes .. 27

3.7.4 Example of classes and operators ... 31

3.7.5 Type names .. 32

3.7.6 Definition of types ... 32

3.7.7 Enum types .. 32

3.7.8 Declaring your own enum types .. 33

3.7.9 Vectors and matrices ... 33

3.7.10 Series ... 35

3.8 Flow control ... 38

3.8.1 If, else, do and while .. 38

3.8.2 The for loop ... 38

3.8.3 The switch statement .. 39

3.8.4 Error handling: Try and catch .. 40

3.9 Comments ... 41

3.10 Debugging .. 42

3.10.1 Immediate window ... 42

4 Writing library files .. 43

4.1 Creating library functions ... 43

4.2 Writing overloaded functions ... 43

4.3 Adding member functions to object classes ... 43

4.3.1 Adding a valuation method to an instrument ... 43

4.3.2 Adding a quote field method to an instrument ... 44

4.4 Writing help text for library functions ... 44

5 Using the COM interface ... 46

6 Using the Inter-Quantlab Communication Server - IQC .. 47

6.1 Step-by-step installation of the IQC on the server ... 47

6.2 Creating a connection to the IQC server from the Quantlab client 48

6.3 Example of creating a chat room using IQC ... 49

6.4 Example of feeding some market-maker corp spreads ... 51

7 Output - tables and graphics ... 54

7.1 General purpose table .. 54

7.1.1 Attaching an expression to a table .. 54

Page 5

7.1.2 Table options and formatting .. 56

7.1.3 Vector parameters in general tables ... 57

7.1.4 Automatic text formatting ... 57

7.2 The instrument table .. 57

7.2.1 A standard instrument table ... 58

7.2.2 Formatting the instrument table ... 59

7.2.3 Creating instrument tables using an instrument vector function 60

7.3 The graph window.. 60

7.3.1 An example of a time series graph .. 61

7.3.2 An example of how to merge parameters to common controls 61

7.3.3 Using the graph mode toolbar .. 64

7.3.4 Graph formatting options .. 65

7.3.5 Scatter graphs .. 67

7.3.6 Plots using matrices or series(vector(number)) .. 68

7.3.7 Column graphs ... 68

7.3.8 Bar charts (hi-lo etc) .. 68

7.3.9 Creating labels ... 69

7.4 Handling parameters .. 71

7.4.1 Simple parameter controls .. 71

7.4.2 The instrument control .. 71

7.4.3 The curve control ... 71

7.4.4 Creating common controls using Parameters Options ... 72

7.4.5 Tab parameters.. 72

7.4.6 Writing tool tips for parameters .. 73

7.4.7 User defined lists (fill functions) .. 74

7.4.8 Out-parameters in attached functions .. 76

7.5 Handling calculation order .. 77

7.5.1 General rules for calculation order of attachments .. 77

7.5.2 Performance optimisation ... 78

7.5.3 Calculation order in the instrument table ... 78

7.5.4 Using buttons to trigger calculations ... 78

8 Case studies ... 79

8.1 Producing a zero coupon curve: zero_curve.qlw .. 79

8.2 Zero coupon curve with blending and choice of methods: zero_curve2.qlw 81

8.3 A zero coupon studio: zero_studio.qlw ... 82

8.4 Pricing a bond relative to a benchmark curve: bond_pricing.qlw 83

Page 6

8.5 An instrument table with spreads to a benchmark curve: bench_spreads.qlw 85

8.6 Extending spread calculations with user input: bench_spreads2.qlw 86

8.7 Calculating covariances: covariance_matrix.qlw .. 87

8.8 Creating a simple portfolio Value-at-Risk function: Portfolio_VaR.qlw 88

8.9 Calculating tail rates: tail.qlw .. 89

8.10 Has the market been wrong or right?: expectations.qlw .. 90

8.11 Creating an intra-day chart: intraday_graph.qlw ... 92

8.12 Using function pointers and classes: fp_test.qlw ... 94

8.13 A condensed market page: market_page.qlw .. 95

Page 7

1 LƴǘǊƻŘǳŎǘƛƻƴ

1.1 What is the Quantlab system?

Production and distribution of financial analysis in a broad sense. Quantlab is a comprehensive
software environment where financial analysts and traders can build, simulate and visualize different
analyses and trading scenarios. Complex calculations involving real time data a multitude of time-series
data are quickly performed using the built-in expression language and the powerful real-time
evaluation engine. The resulting data may be presented in a view, such as a graph or a table, and can
also be exported into an external application (e.g. Microsoft Excel) using a COM interface.

Developer and User Edition. Quantlab is available in two versions, a Developer edition and a User
edition. The Developer edition is the more complex application, which the analyst uses for constructing
trading strategies and other types of analysis. Traders, sales staff and brokers use the Quantlab User
edition to review and examine the analysis available within a workspace. They may for example change
the financial yield curves or instruments involved in the analysis or choose to look at a specific historical
time segment of interest.

Powerful expression language. The built-in expression language is highly versatile, and the end-user
is free to extend it using the innovative library functionality. The syntax resembles C++ with the
addition of high-level treatment of vectors and matrices: There is the possibility to express normal
algebraic expressions using vectors and matrices and you can expand scalar functions over vectors and
matrices. A powerful visual expression editor aids in the creation of complex expressions and instant
help is available for all functions and objects. Expressions are easily attached to different views using
the workspace manager, and a view may contain an unlimited amount of expressions. For the
advanced user there is a C++ API available, exposing the full capability of Quantlab, thus creating a
truly open and extensible environment.

Real-time calculations. Connected to one of the supported real-time feeds, Quantlab is able to display
and manipulate expressions involving real-time term structures as well as historical time-series data.
The evaluation engine efficiently handles the re-calculation.

Historical data. An important purpose of Quantlab is to facilitate the analysis of time-series data, for
example the development of the TSIR over time. Any expressions created may thus easily be evaluated
over a certain time period, with the evaluation engine automatically taking care of multiple sets of
holidays, instruments going on and off the curves involved, different real-time links used for the same
instrument over time, to mention but a few of the complexities that Quantlab automatically handles.

SQL Database. The evaluation engine is connected to an industry standard SQL database, where the
necessary instrument and curve definitions resides, along with available time series data. The data may
come from an external source or may be automatically collected from a real-time feed such as Reuter
Triarch by using the Algorithmica History Server. More details on this solution, and the History Server
in particular, are available upon request.

External API. Quantlab comes with a C++ API, exposing the full capability of the application, and
presenting the C++ programmer with an abundant financial class environment to build upon. Any
imaginable additional functionality may thus be added by the inclusion of one or several external plug-
in modules. Third party libraries are also expected to be available for a wide range of financial
calculations.

COM library. The Quantlab function library is available through a COM interface in Visual Basic. This
means that the advanced user can build own applications involving Visual Basic, MS Excel with help of
the Quantlab financial calculations and database communication. Moreover, all functions available in
Quantlab are also possible to export to the COM interface, including your own QLang library files and
C++ dll:s.

Page 8

1.2 Quantlab on-line function browser

Quantlab has an extensive function help browser that describes all functions, object types and
keywords, together with numerous code examples. The function browser can be found under View |
Function browser or by pressing Alt 1. By default, the Function browser connects to Algorithmica
wŜǎŜŀǊŎƘΩ ƻƴ-line help library. This ensures that you always use the latest help documentation. By
right-clicking on the Function browser you may select to use the local copy of the browser instead.

1.3 Contents of this document

The pdf help document is organized into five main chapters.

1st chapter ς Introduction

2nd chapter ς Guides through the workspace environment

3rd chapter ς Talks about the programming basics of Quantlab

4th chapter ς Describes how to build the user interface with graphs and tables

5th chapter ς Presents a collection of case studies for typical uses of Quantlab

Page 9

2 5ŜǾŜƭƻǇƳŜƴǘ ŜƴǾƛǊƻƴƳŜƴǘ
The development environment is designed with the specific requirements of the financial analyst in
mind. Traditionally the quantitative analyst has used a combination of development tools including
mathematical software packages, spreadsheets, C++ or Visual Basic to complete the work. Quantlab
integrates a high level programming language with the possibility to add user-defined functions or
classes from C++ or any COM compliant programming language. Quantlab handles all database
interaction and real time connections.

2.1 Starting and quitting Quantlab

2.1.1 Starting Quantlab

Start Quantlab by double-clicking on the Quantlab icon on your desktop. An empty workspace is
automatically opened. To open an existing workspace file use File|Open. There are example
workspaces in the folder Algorithmica Research\Quantlab\Examples\ Workspaces.

Valid license! Quantlab requires a valid license in order to work. The license is connected either to the
computer on which the software initially was installed on or to the user who initially signed for the
product. Please contact your IT department to check which type of license you have.

2.1.2 Quitting Quantlab

You quit your Quantlab session by clicking on File | Exit in the main menu.

Page 10

2.2 Quantlab workspace

The Quantlab system has two faces, a developer environment and a user environment. The developer
version workspace is designed for easy programming and testing. Here you find the workspace browser
and function library.

Workspace showing the main features of the developer edition

Windows within the workspace can be moved around freely. Windows with double bars on one edge
dock to the side you move it to. To un-dock a window simply double click on the window side with
double bars. If you do not want the window to dock, move it having the Ctrl button pressed down.

Page 11

2.3 Workspace tools

2.3.1 Workspace browser

In the workspace browser you can organize your expressions, tables, and graphs into folders and tabs.
On opening Quantlab an empty workspace will be created.

A workspace example

By right clicking with the mouse on the workspace icon you can insert folders to organize your project.
To visually organize your tables and graphs in the workspace, you can insert tabs using Insert | Tab on
the menu. Graphics and tables can then be dragged-and-dropped under a relevant tab.

Rename a folder, tab, expression, graph or table by right clicking on the object you want to edit. Right
clicking also displays the most common properties of each object.

You can change the order among tabs by dragging and dropping: Use the left mouse button to drag a
tab to the workspace symbol in the top of the workspace browser. This will put the selected tab last in
the list.

2.3.2 Expression editor

In the expression editor you write the code to be executed and viewed in tables or graphs. Code written
in the editor is saved in plain text so you can import and export this code to any text editor. To get help
on using the built-in functions please see the Function browser.

Page 12

Sample code in the Expression editor (with syntax errors highlighted)

Coding help is available as colour-coded text, parenthesis checks, function parameter lookups, and
object member lists.

Default colour codes:

Colour code Type of code

Green Comments

Blue Key words in QLang

Beige String

Orange Unfinished string

Green-blue Date

Fluorescent green Unfinished date

Violet Number

User defined settings for the expression window can be found in the top menu Tools|Options|Edit
where also background colour and indentation can be changed.

Useful tool-tip! To assist in entering built-in or user functions, a tool tip will be displayed when you
enter the first left hand parenthesis of the function. All objects will show its member list when entering
the dot after the name.

Page 13

2.3.3 Function browser

An important part of the help that comes with Quantlab is the function browser. All types, functions,
objects, and members are displayed. If you write library files or program your own C++ functions using
the Quantlab API, these functions will also show up in the function browser.

The Function browser

Top left hand window will list all objects and folders of functions available. The top middle window will
ŘƛǎǇƭŀȅ ŀƭƭ ŀǾŀƛƭŀōƭŜ ŦǳƴŎǘƛƻƴǎΦ ¢ƘŜ ǘƻǇ ǊƛƎƘǘ ƘŀƴŘ ǿƛƴŘƻǿ ǿƛƭƭ ŘƛǎǇƭŀȅ ǘƘŜ ŀŎǘƛǾŜ ŦǳƴŎǘƛƻƴǎΩ ǾŀǊƛŀƴǘǎ
including the type and name of the parameters.

Help for each function is displayed in the bottom window. The help window is by default read directly
from Algorithmica Research' web servers. A locally stored help can be accessed by right-clicking in any
top window and de-ǎŜƭŜŎǘƛƴƎ άƻƴƭƛƴŜ ƘŜƭǇέ ƛƴ ǘƘŜ ƳŜƴǳΦ

Speed tip! Right clicking on a function and pressing insert will copy the function and its parameters
inserted into the expression editor.

Page 14

2.3.4 Real time Quotes browser

When viewing any graph or table that includes today's date, the real time browser will display real
time data. By default, today's date is used whenever you want to view real time data.

Only instruments relevant to the active graph or table will be displayed in the real time browser. In
order to view real time quotes for another graph or table, simply click on it to make it the active
window.

The order of the columns can be changed and switched on/off by right-clicking in the window and
ǎŜƭŜŎǘƛƴƎ άŎƻƭǳƳƴ ǇǊƻǇŜǊǘƛŜǎέΦ

Example of the real time browser with instruments and quotes

The real time browser enables the user to temporarily override the real time quote with own quotes.
By double clicking on any quote field, the user can enter own values. Blue fields indicate that the quote
is user defined. To activate the user quotes, click on the check box in the first column.

Page 15

Update in the bottom right to will send your overridden quotes to the workspace graphs and tables.

¢ƻ ǊŜǎŜǘ ǳǎŜǊ ǉǳƻǘŜǎ ōŀŎƪ ǘƻ ǘƘŜ ƭŀǎǘ ǾŀƭƛŘ ǊŜŀƭ ǘƛƳŜ ǉǳƻǘŜ ǳǎŜ ǘƘŜ ΨwŜǎŜǘΩ ōǳǘǘƻƴΦ

Speed tip! When entering your own quotes you usually want to change the market quote by some
small increment. Use the keys for fast action.

Change in the last figure Use arrow up / arrow down

Change a basis point Use Ctrl + arrow up / arrow down

Change a tenth of a percentage Use page up / page down

Change a whole figure Use Ctrl + page up / page down

2.3.5 Messages - warnings and compiler errors

There are two phases to programming and testing financial expressions in Quantlab. First the written
expression must be syntactically correct. This is taken care of within the expression editor and
compiler. Secondly the financial expression must make sense when used on real world data.

General settings for when and why the messages should display can be found in Tools | Options |
Messages. Read further under 2.4.4.

When compiling and debugging an expression window any compiler messages will show in the View |
Messages compiler tab, and in run-time warnings will can be found under View | Messages warnings
tab.

Example of warnings in the run time environment

Typical warnings occur when:

- historical data is missing in the database

- calculations fail due to missing data

- required static data is missing for any instrument

By right clicking on the warnings, copy and delete functions appear.

2.3.6 Progress list

Workspaces can eventually contain hundreds of expression that will be evaluated each time any
parameters or quotes change. The progress list will display which expressions that currently are being
re-calculated.

Page 16

Example of the progress list

For each graph or table a star (*) in the window header is shown as long as there is at least one
attachment that is still calculating.

To manually stop the execution of an expression, right click on the expression attached to a specific
graph or table in the workspace browser and press Stop. The evaluation cannot be stopped in the
progress window.

Speed tip! If the computer starts to slow down due to extensive re-calculations, you can manually set
a re-calculation frequency. Under the Tools | Options menu, the real time re-calculation frequency can
be set to a higher number. For example, entering 10 seconds will drastically reduce the load.

2.4 Setting preferences (Tools)

Under the Tools Option menu, you will find some useful possibilities to set preferences for the general
appearance of Quantlab, for the expression window and for paths when loading various library files.

2.4.1 Database options

The name of the ODBC data source that is used for retrieving all instrument and time series data. You
can change the ODBC source and then press Reload in order to switch the database. This is equivalent
to closing down Quantlab and re-open it with the current workspace.

2.4.2 In tab General:

- Option to show a dialog when attaching functions to graphs or tables

- Option to show a name dialog when creating a view (table or graph)

- Option to calculate visible views only. Normally, this should be checked as it speeds up
performance. If all views must be calculated at each relevant real time update, it should be
unchecked.

- Number of files in the recently used files list and the maximum number of characters used for
the name and the paths in the menu.

- Default quote side. When constructing an instrument or a curve you have several possibilities
to set the quote side. However, often the quote side is an optional parameter and if it is not
set, the default value defined in this dialog will be used.

- Minimum time between calculations. Useful for reducing the number of recalculations when
real time data is updated frequently. This is only used for the calculations, the RealtimeQuotes
window (see 2.3.4) will not be affected.

- Save favourite real time instrument names (real time identification codes) for faster
workspace start-up times. You set the number of days that Quantlab will save what

Page 17

instruments you have used. When the options is set at 1 or more days, on start-up Quantlab
will request a subscription to these real time items even before you open a workspace. Often,
this will drastically reduce the time it takes to open workspaces having many real time
instruments. The accumulated history of real time items can be cleared by pressing the Clear
button.

2.4.3 In tab Extended:

- Maximum number of warnings. Put a limit on how many warnings will be written in the
warnings window each time an attachment is evaluated. If the number of errors in your
expressions or database is very large, the mere update of this window may be time consuming.
In such a case it may be useful to limit the number of warnings until the errors are taken care
of.

- Calculation thread priority . This can be changed in order to let Quantlab get larger or smaller
part of the CPU time of the computer.

2.4.4 In tab Messages:

- Warnings, displaying run-time messages such as real-time data missing or non-evaluating
functions.

- Compiler messages and errors, displaying information from the compiling session.

The display level can be individually set to:

- Always show

- Show if message window visible

- 5ƻƴΩǘ ǎƘƻǿ

2.4.5 In tab Table:

- Show errors messages. In some cases, errors may be specific for a cell in a table. To show all
upcoming errors within the tables, click this check box.

- Enable direct cell editing. If this is checked you can select a cell in an input column in a table
and edit directly. Otherwise you have to double-click or use F2.

2.4.6 In tab Edit (for the expression editor):

- Choice of indentation. Automatic indentation and tab length.

- Debug windows. Number of decimals when showing numerical values of variables.

- Colour display setting. Either use default setting or choose your own colours for different
types of text in the expression windows.

Page 18

3 tǊƻƎǊŀƳƳƛƴƎ ƛƴ vǳŀƴǘƭŀō ǳǎƛƴƎ v[ŀƴƎ

3.1 Introduction

The Quantlab language QLang makes financial programming easy! QLang is designed to work with time
series data vectors and matrices. Included in QLang is also an extensive function library with many
tailor-made fixed income functions that makes programming fast and efficient.

Programming in Quantlab follows these basic steps:

1. Write code in an expression editor

2. Check and compile the code [by pressing F7, or choosing Exp, Compile]

3. If code compiled correctly, the "out functions" appear in the Workspace browser

4. Drag and drop the functions from the Workspace browser to graphs and tables

When programming is finished and workspaces have been created they are ready to be distributed to
others. Everyone using Quantlab, either Developer or User Edition, can now run all analytics of the
workspace presented in graphs and tables.

3.2 A simple example

[ŜǘΩǎ ƭƻƻƪ ŀǘ ŀ ǎƛƳǇƭŜ ŦǳƴŎǘƛƻƴ ǘƘŀǘ ŀŘŘǎ ǘǿƻ ƴǳƳōŜǊǎΥ

number my_add(number x, number y) = x + y;

In order to make this function available for presentation in tables or graphs the keyword out is used,
written at the start of the function definition:

out number my_add (number x , number y) = x + y;

If you write this function in an expression window (Insert ς Expression) you will be able to compile the
code by pressing F7. As the code is correct you will not get any warnings. Try to change the code to
something incorrect, for example:

out number my_add (number x , number y) = x + y +

If you then press F7 again, you will get an error message (if messages has not been switched off in
under options | messages).

Change back to the original version of the function, recompile the
code and look for the Workspace window. In the Workspace window
(View ς Workspace) you will find a + sign. If you click the plus sign
you will find the function my_add. This function is available to attach
to a table. To do so, insert a new table (Insert ς Table) and it a name.
Then drag the function my_add (using the left key of the mouse) to
the table window and drop it there. Two Number Edit Boxes will
appear next to the table, one for each parameter of the function,
and these are used for choosing the values of x and y. Enter two
numbers in the boxes and press Recalc to make Quantlab evaluate
your function and show the result in the table.

Chapter 6 explains more about how to format tables and graphs.

Page 19

3.3 Keyword list

This section is a summery of the keywords that form the language base. Keywords are marked with
blue when written in the expression editor. Note that a description on each keyword can be found in
the function browser.

The keywords Module, Public and Import are used for the management of expressions.

module The module keyword creates a namespace of functions.

public The public keyword assigns a function to be available outside a module.

import The import keyword loads the public functions of a module so that they become
local functions.

The keyword Return is used when defining functions in the standard form.

return The return keyword terminates the current function call and returns the value or
object following it. See 3.4.1.

The keyword void is for defining procedures.

void The void keyword replaces the return value type for a function that does not return
any value. See 3.4.1.

The keyword out is special for QLang and used for making functions available in the user interface.

out The out keyword assigns a function to become available for attachments to graphs
or tables after compilation. See 3.4.4 for the use on parameters.

The keyword option is special for QLang and used for certain options for variables and functions.

option option(nullable) is used in a function definition before a parameter name to make
the function possible to call with a null value in that parameter.

option.

option (category: <string>) is used immediately after the function header in a library
file to indicate what category the function shall appear in within the Function
browser. The string contains the name of the category, either an existing category
or a new one.

option (com_name: <string>) is used immediately after the function header in a
library file to publish the function to the COM interface (for use in excel or C#) using
a user defined name. This is necessary if functions in library are overloaded as COM
does not allow for overloaded functions.

The keywords if, switch, else, do, while, for, break and continue are used for flow control.

if else The if and else keywords are used for conditional expression evaluation. See 3.8.1.

Page 20

switch The switch keyword is used when there are several cases in a comparison situation.
See 3.8.3

while The while keyword is used for conditional loops with initial condition test. See 3.8.1.

do while The do while keywords are used for conditional loops with final condition test. See
3.8.1.

for The for keyword is used for unconditional loops. See 3.8.2.

break The break keyword terminates the smallest enclosing loop statement (do, for, or
while) in which it appears.

continue The continue keyword terminates the current iteration of the smallest enclosing
loop statement (do, for, or while) in which it appears, and the execution continues
with the next iteration.

The keywords Try and Catch are used for error handling.

try The try keyword introduces a code section in which errors are expected to occur.
See 3.8.4.

catch The catch keyword introduces a code section that takes care of the errors in the
preceding try section. See 3.8.4.

The keywords String, Matrix and Vector are used for creating specific types.

string The string keyword assigns a variable, function or a function parameter to be a
string. See 3.7.1.

matrix The matrix keyword assigns a variable, function or a function parameter to be a
matrix. See 3.7.7.

vector The vector keyword assigns a variable, function or a function parameter to be a
vector. See 3.7.7.

These keywords are always used in connection with an object type. For example, to create variable
which is a vector of numbers, you write

vector (number) my_variable;

The keyword Series is a special QLang feature used in particular for time-series calculations.

series The series keyword creates a series of elements by evaluating an expression over a
range. The dimension of the series is equal to the number of ranges. See 3.7.10.

The keywords Object and New are used when defining objects.

class The class keyword is used when defining an object class. See 3.7.3.

object The object keyword is used when defining an object class. See 3.7.3.

new The new keyword is used when creating an instance of an object. See 3.7.3.

The keywords typedef and enum are used for defining types.

Page 21

typedef The typedef keyword is used when giving new names to types. See 3.7.6.

enum The enum keyword is used when creating enum lists. See 3.7.8.

The keyword Function is used for function reference in function definitions.

function The function keyword refers to a function parameter in a function definition. See
3.4.6.

The keyword operator is used when defining operators, typically for objects.

operator The operator keyword is used when defining operators, see 3.7.4.

3.4 Functions

Functions can be defined in two ways, in the standard way and the compact way. In the standard
function definition the syntax resembles very much the syntax of C++ or similar languages, in the
compact form the function definition is written by using only one expression. Both forms can be used
in the same expression window.

3.4.1 Standard function definition

The standard way of defining a function looks like this:

return_value_type function_name (parameter_type1 parameter_name1, é)

{

 < function body >

 return < expression >;

}

The function is defined by declaring the return value type, the function name followed by a
parenthesis, and then a function body. Inside the parenthesis all the function parameters are defined
by writing their types and names. Note that each parameter requires its own type definition, and that
these types are specific for QLang. Within the function body the usual variable declarations and
operating statements are written, each ending with a semi-colon. The function returns the value of the
expression that follows immediately after the keyword return.

For example, a function adding two numbers:

out number my_add(number x, number y){

 return x+y;

}

The return value type must be declared as any of the QLang types. If the return value type is set to void
and the return statement is omitted, the function returns no value:

void function_name (parameter_type1 parameter_name1, é)

{

 < function bo dy >

}

The keyword out is used to make a function available for attaching to graphs or tables. For example,
the following function could be attached to a table in order to display a multiplication table:

Page 22

out vector (number) mult (number x) {

 vector (number) y = [1, 2, 3, 4];

 return x*y;

}

3.4.2 Compact function definition

This is an alternative way of defining functions, which is useful for simple expressions. It is written
starting with a return value type and a function name, followed by a parenthesis containing the
parameters, and then an equality sign. After the equality sign must be a complete function expression.
The function takes the following form:

return_value_type function_name (parameter_type1 parameter_name1, é) = <

function_expression >;

Note that the expression ends with a semi-colon. The my_add example used earlier would look like
this:

out number my_add (number x , number y) = x + y;

These functions are often written in one row, but for the sake of readiness, they can be written in
several rows:

out number my_add (number my_x_parameter , number my_y_parameter) =

my_x_parameter + my_y_parameter;

Important news! The compact function definition has changed since Quantlab 2.4x as it now requires
the return type definition and semi colon after the expression.

3.4.3 Instances of functions

When a function is attached to a table or a graph an instance of the function is created. You may have
several instances of the same function in the same graph or table. In the calculations and user
interface, Quantlab will treat them as separate functions that may or may not use the same input
parameters. Only when the code, i.e. the definition of the function, is changed this will affect all
function instances.

3.4.4 Function parameters

Function parameters are defined by the type followed by the parameter name, as described in 3.4.1.
There is also a possibility to define optional parameters with a default value by setting these
parameters equal to an expression, for instance:

number my_add(number x, number y = 1){

 return x+y;

}

out number test_my_add (number x){

 return my_add(x);

}

The first function, my_add, has one optional parameter y which is defaulted to 1 if not set, as in the
second function test_my_add. The default value may also be something more complex, for example a
function call:

number default (number x){

Page 23

 return x* 2;

}

number my_add(number x, number y = default(2)){

 return x+y;

}

out number test_my_add (number x){

 return my_add(x);

}

In this example we have defined a separate function called default which calculates the default value
for the function.

When attaching functions to graphs or tables, all parameters, including optional ones are displayed,
without default values.

When calling functions, the function parameters are by default copies (for number, date and logical)
or copies of references (for string and object) of the original variable.

In the following example, the function f2 returns 0 as function f1 only changes a copy of the original
variable.

void f1 (number c)

{

 c = 1;

}

out number f2 (){

 number b = 0;

 f1 (b);

 return b;

}

Using the keyword out before a parameter definition will cause that parameter to be referring to the
original variable (for number, date and logical) or original reference (for string and object), allowing
change of the external environment. This is similar to the Pascal VAR parameter and the C++ way of
declaring a parameter as a reference (using &).

In the following example, the function f2 returns 1 as function f1 changes the value of the original
variable.

void f1 (out number c){

 c = 1;

}

out number f2 () {

 number b = 0;

 f1 (b);

 return b;

}

3.4.5 Calling functions

There are a large number of pre-defined functions in QLang for general and financial purposes. These
are divided into groups according to their purpose and can be found in the Quantlab function browser.
The function browser is made visible from the Quantlab menu bar (View ς Function Browser).

Both user-defined functions and pre-defined functions are called similarly to common programming
languages. For example the user-defined function my_add in 3.2 could be called like this:

result = my_add (2, 3);

if we have defined a variable called result, of the type number.

Page 24

Important news! From version 3.0 and onwards, functions without any parameters must be called
using an empty parentheses, for example my_func(). This is a common case for many object member
functions.

3.4.6 Function pointers

In Quantlab 3.0 the concept of function pointers is introduced. It is useful in various cases, for example
when performing optimisation calculations. Here is an example which uses the minimisation function
zero_bisect. See also 3.7.3 for information on object classes.

class param_object{

// This object contains all parameters that are used for

// calculating the function f,except for the variable x.

 number a_param;

};

number f(param_object p, number x){

// The object function

 return - p.a_param*x + 1;

}

out number test(){

// Find x that makes f = 0.

 param_object p = new param_object;

 p.a_param = 4;

 number x1 = - 3;

 number x2 = 4;

 number tol = 0.001;

 return zero_bisect(p, &f, x1, x2, tol);

}

On the last line we call zero_bisect with a reference to the function f using the &-sign. The function
zero_bisect requires that the function that is referenced to (in our case, f) has two parameters: An
object and an x-parameter. In this way you can construct a function f that is arbitrarily complicated as
long as it is a function of a single variable x.

The following example shows how to define your own function pointers. The function calc below
performs any calculation using a function f that takes two parameters. We have defined two such
functions: plus and minus. The last function below uses these functions depending on the user input.

number plus (number a, number b) = a + b;

number minus (number a, number b) = a - b;

number calc(number a, number b, number function (number a, number b) f){

 return f(a, b);

}

out number test(number a, number b, string method){

 if (method == 'plus')

 return calc(a, b, &plus);

 if (method == 'minus')

 return calc(a, b, &minus);

}

The syntax for the declaration of the function pointer is thus:

<return_type> function (<type>param_1, <type> param_2é) function_param_name

More examples of function pointers are found in the case study in 8.12.

Page 25

3.5 Local and global variables

In a function, local variables may be declared as in other common programming languages, with or
without initialisation, for example:

<function declaration>{

number x;

number y = 5;

vector (instrument) i;

é

}

For global variables the treatment is somewhat more special. Global variables are only common to all
calls from functions within the same expression window. An example:

number x;

out number my_function (number y){

 if (null (x)){

 x = 0;

 }

 else {

 x = x+1;

 }

 return x* y;

}

Each time my_function is called, the variable x will be updated. An extensive example of how to use
global variables is discussed in 8.9.

Important! It is important to note that multiple instances of functions attached to the same or different
tables or graphs will all refer to the same instance of the global variable.

3.6 Operators

Common mathematical and logical operators are available in QLang. Operators work like ordinary
functions, for example allowing vector and matrix expansion, see 3.7.7.

Arithmetic operators:

+ addition

- subtraction

* multiplication

/ division

^ power (can also be written using the function pow)

Note! The type of multiplication is determined by the operands. A multiplication of two vectors will
result in a scalar (so called scalar product). A multiplication of matrices or a matrix and a vector is
treated as a matrix multiplication. See 3.7.7.

Logical operators:

Page 26

! logical negation

!= not equal to

&& logical AND

|| logical OR

<,> logical relation operators

== logical equality operator

There is also a simple conditional operator available using the following syntax:

<conditional expression> ? <expression1> : <expression2>

If the conditional expression is evaluated as true then expression1 will be returned, otherwise
expression2. For example, the following function will return x if it is positive, otherwise 0.

number my_function(number x) = x>0 ? x : 0;

Quantlab will perform a short-circuit evaluation of logical and conditional expressions, only executing
those that are necessary.

3.7 Data types

QLang carries a rich family of types, much like any modern programming language.

3.7.1 Basic types

The number of basic types in QLang is limited for ease of use. QLang has the following five basic types.

Type Description Literals

Number The basic numeric type Numbers are simply entered as they are. Very small
or large numbers can be written with mantissa,
then d, D, e or E, then the exponent. 1.2e-4 is
interpreted as 0.00012, or 1.2 basis points.

Date The basic date type Dates are written using # then ISO standard dates.
#2000-12-29 is interpreted as the 29th of
December 2000.

Logical The basic Boolean type True or false.

String The basic character string type Strings are encapsulated by simple or double
quotation marks. Both 'text' and "text" are
interpreted as strings containing the word text.

Object The basic object reference type No literal.

There are no specific integer, float, percentage or basis point types; the number type covers them all.
Of the above basic types, only the object basic type cannot be used directly in variable or function
parameter declaration. Instead of the object basic type, the object types described below are used.

This is an example of using some basic types to get different user controls when attached to a table.

out number myFunc(string myStr, number myNum, date myDate)

{

 é

Page 27

}

Quantlab recognizes the types and automatically creates appropriate controls.

3.7.2 Object types and member functions

There are many object types available in QLang. Many of them are financial, such as instrument and
curve, but there are a others used for presentation of data, for mathematical purposes and so on.

Objects are generally created as a result of QLang function calls. They can then be stored in variables
or used directly for further function calls. Objects also have member functions, which can be called
using a standard dot notation.

Below is an example of a function that returns the yield of an instrument on a specified trade date. An
instrument object is created from the information in the database, and then the member function
yield() is called to extract the sought yield.

number my_yield(instrument_name i, date tradeD){

 return instrument(i, tradeD).yield();

}

Some objects methods have a corresponding function in another object. As an example, both rows
below will return the dirty price of an instrument priced from a zero coupon curve model fit of the
market rates.

fit_result.dirty_price (instrument);

instrument.dirty_price (fit_result);

3.7.3 Creating new classes

An introduction to working with user-defined classes

In Quantlab 3.0 it is possible to create new classes with member variables and member functions. The
syntax is very much in line with C++. Below is an example of a definition of an object class that stores
two numbers, called my_pair. The object class has a member function that adds the two numbers and
a creator with the same name as the object class. The last function can be attached to a table in order
to test the object class.

class my_pair

{

 public:

 number add() ;

 number x ;

 number y ;

};

Note that you need to declare all member functions inside the class definition ς as is done with the
function add() above.

my_pair my_pair (number x, number y){

 my_pair t_n = new my_pair ;

 t_n.x = x ;

 t_n.y = y ;

 return t_n ;

}

number my_pair .add(){

Page 28

 return x + y ;

}

out number test_ my_pair (number x, number y){

 my_pair p = my_pair (x, y);

 return p.add();

}

The class definition syntax

A user-defined class is defined using the following syntax:

class <class name> [: <class to inherit from>]

{

 [public:]|[private:]

 ...

 [<name of constructor (i.e. class name)>(<params>) ;]

 ...

 [virtual <return type> <name of virtual member function>(<params>) ;]

 ...

 [<name of member function>(<params>) ;]

 ...

 [<type of member variable> <name of member variable> ;]

 ...

} ;

<class name>.<name of constructor>(<params>)

[: <name of member variable>(<params>),...]

{ <body>]

...

<return type> <class name>.<name of member function>(<params>)

{ <body> }

...

A class may inherit from another class ς called a super-class ς by using the familiar : <class to

inherit from> notation above.

In a class ς as opposed to an object ς all members and member functions (including constructors)
are declared privat e: by default. This means that they cannot be accessed by any code outside the
class. In order to make them accessible from the outside they need to be within the scope of a
preceding public: declaration:

class myClass

{

 public:

 number get_secret_number () ;

 private:

 number secret_number ;

} ;

Now, the secret_number above can only by accessed through the get_secret_number().

A special type of member function called a constructor is used to initialize the member variables of a
class. It is possible to do this using the familiar [: <name of member variable to initialize>(<params>)]
notation, as in the following example:

class myClass

{

 public:

Page 29

 myClass(number n) ;

 number get_secret_number () ;

 private:

 number secret_number ;

} ;

myClass.myClass(number n)

: secret_number(n)

{}

number myClass.get_secret_number()

{

 return secret_number ;

}

Note that a constructor cannot have an explicit return type, since it implicitly returns the newly created
class object.

The virtual keyword declares a virtual member function that can be overridden by any inheriting
class as seen in the following example. Note that all virtual member functions need to be defined in all
classes ς also in the super-class:

class A

{

 public:

virtual string f() ;

 string g() ;

} ;

string A.f() { return ñA.fò ; }

string A.g() { return ñA.gò ; }

class B : public A

{

public:

virtual string f() ;

 string g() ;

} ;

string B.f() { return ñB.fò ; }

string B.g() { return ñB.gò ; }

class C : public A

{

 public:

virtual string f() ;

 string g() ;

} ;

string C.f() { return ñC.fò ; }

string C.g() { return ñC.gò ; }

out vector(string) test_f()

{

 vector (A) v = [new A, new B, new C] ;

 return v.f() ;

}

out vector(string) test_g()

{

 vector (A) v = [new A, new B, new C] ;

Page 30

 return v.g() ;

}

The output table below shows the difference between the virtual member function f() and the
normal member function g():

Scope of class members and the use of this

The familiar dot notation is used to access member variables and calling member functions in a class:

A a = new A ;

a.my_number = 42 ; // Accessing one of A:s members

a.f() ; // Calling one of A:s member functions

By explicitly naming the class name after the dot it is possible to access member functions or variables
that are normally hidden by definitions in inheriting classes. This can be done even if the function is
not declared as virtual :

B b = new B ;

b.f() ; // Calling the f() member function defined in B

b.A.f() ; // Calling the f() member function defined in A

 It is possible for a member function of a class to obtain a handle to itself by using the this keyword.
This can for example used as a parameter in function calls as in the following example:

string func(A a)

{

 return a.f() ;

}

logical A.func()

{

 string s1 = this .f() ;

 string s2 = func(this) ;

 return s1 == s2 ; // always returns true

}

Please note though, that a member function can always access all of its own member variables directly
without using this .

Page 31

Casting classes

When working with class hierarchies it is often useful to convert a handle to a super class object into
a handle of the actual base class it belongs to (or any other class in between). This is called a dynamic
cast and is performed by using the dynamic_cast operator:

A a = new B ; // This is possible since class B inherits from class A

B b = dynamic_cast (a) ; // Con vert into a handle to a B

If the cast is not possible due to the classes not being members of the same class hierarchy it will fail
and an error will be thrown.

When writing library files, it is also possible to add new member functions to built-in object classes,
see 4.3. More examples of creating object classes are found in the case study in 8.12.

3.7.4 Example of classes and operators

Here is a simple example where complex numbers and the + operator is defined in a library file:

class complex {

private :

 number r, i;

public :

 complex(number r, number i);

 number re();

 number im();

};

complex.complex(number r, number i) : r(r), i(i) {;}

number complex.re(){

 return r;

}

number complex.im(){

 return i;

}

// Operator overloaded using a member function

complex operator + (complex c, complex d)

{

 return new complex(c.re() + d.re(), c.im() + d.im());

}

It can be tested by calling a function like this:

Page 32

out vector(number) test _complex () {

 complex a = new complex(1.2, 3.4);

 complex b = new complex(5.6, 7.8);

 complex c = a + b;

 return [c.re(), c.im()];

}

3.7.5 Type names

In QLang several type names are defined. The type name is simply a different name for one of the
already existing basic or object types, similar to using typedef in C/C++. An example of a type name is
instrument_name, which really is a string used for finding an instrument in the database.

There are two purposes of type names: The first is to clarify the programming code; the second is that
the graphical interface of Quantlab might recognize them and create control boxes appropriate for the
input. Taking instrument_name again as an example, a control box for an instrument_name presents
a list of all instruments in the database, thus making instrument selection easier.

3.7.6 Definition of types

In Quantlab 3.0 you can use the keyword typedef to rename existing types, as in C++. For example the
number type can be called my_n:

typedef number my_n;

my_n j = 1;

out my_n test(){

 return j;

}

The user interface recognises your types as they are only other names for existing types.

3.7.7 Enum types

There are a number of enum types defined in QLang. In earlier versions, they where only strings, now
they are distinct types written with capital letters. A couple of examples are:

error_type: E_UNSPECIFIC, E_CONSTRAINT, E_NULL, E_RANGE, etc.

rate_type: RT_CONT, RT_SIMPLE, RT_EFFECTIVE, etc.

day_count_method: DC_ACT_365, DC_ACT_360, DC_30_360, etc.

bd_convention: BD_NONE, BD_FOLLOWING, BD_MOD_FOLLOWING, etc.

See the Function browser for more information on types.

Important news! In Quantlab workspaces, or lib files, created in version 2.4 or earlier, you must change
the string enum type names to the new type names in order to compile the files.

Page 33

3.7.8 Declaring your own enum types

In Quantlab there is a possibility to create own enum types:

enum weather_type { WT_SUNNY, WT_CLOUDY, WT_RAINY};

You can show the value in string format following this example:

enum my_enum { GR_HELLO option(str: "Hello") , GR_HI option(str: "H i ")};

out string test(){

 my_enum g = GR_HELLO;

 return string (g);

}

3.7.9 Vectors and matrices

Creating vectors and matrices

Objects can be aggregated into vectors and matrices. The basic way of creating vectors or matrices is
by using brackets:

Vectors are created using brackets and comma, [element1, element2, ...].

Matrices are created from row vectors with brackets and comma, [[element11, element12, ...],
[element21, element22, ...], ...]. All vectors must have the same size.

All elements in a matrix or vector must be of the same type. The type is declared within parentheses
after the keyword vector or matrix. Here is an example of how to create a vector of three elements:

vector (number) v = [1, 2, 3];

It is possible to specify the dimension of the vector or matrix without assigning it:

matrix (number) m[3,7];

The matrix m will have three rows and seven columns. It is also possible to omit the dimension when
declaring the matrix or vector:

matrix (number) m;

The matrix m will initially be null and have zero rows and columns and but this can be changed in
runtime. Here is an example of how a vector can be declared and assigned:

out vector(number) vtest (){

 vector (number) v;

 v = [2, 3];

 return v;

}

 A common way of producing vectors or matrices is however by the use of vector (or matrix) expansion.
This means that if you for example call a function with a vector rather than a scalar, Quantlab calculates
a function value for each element in the vector. This also works for matrices. In the following example
a function taking scalars is called with one scalar and one vector.

number my_add (number x , number y)

Page 34

{

 return x + y;

}

out vector (number) f1 (number x)

{

 vector (number) v = [1, 2, 3];

 return my_add(x, v);

}

When calling the function my_add with a vector in the second argument, the function will expand over
the vector v. This means that the number x is added to each element in the vector, and the result is a
vector that the function f1 returns.

Note! When using vector expansion, you must be sure that you call the function with a vector where
the elements are of the same type as the argument type in the function you are calling. For example,
if the argument is of the type date, then you must have a vector of dates as input.

Some functions naturally return a vector, for example the curve object member function instruments()
that returns a vector of instruments.

Copying vectors and matrices

A direct assignment of one vector to another gives only an assignment of the reference, i.e. not the
content of the vector. Therefore, the following example returns [1, 45, 3]:

out vector(number) utest (){

 vector (number) u, v;

 v = [1, 2, 3];

 u = v;

 v[1] = 45;

 return u;

}

To copy the content of the vector you could for example use a help function:

v_c(number v) = v

which uses the vector expansion to create a copy. There is also a built-in function clone_vector that
gives a true copy of the vector.

Accessing and assigning elements in vectors and matrices

Elements in vectors and matrices can be accessed via indexation, using brackets. Indexations start at
0. For example, the following function returns the value 6.

out number my_vector_function (){

vector (number) x = [3, 5, 6];

return x[2];

}

For matrices, elements are accessed via row and column number, separated by comma. The following
function takes out the value 5 from the matrix.

out number my_matrix_function () {

matrix (number) y = [[1, 3], [5, 6]];

return y[1, 0];

}

Page 35

(Remember that indexation starts at 0.) Assigning values to matrices and vectors is done in the same
way. For example

y[1, 0] = 77;

will set the element in the second row and first column of the matrix y to the value of 77.

Multiplication of matrices and vectors

When multiplying two vectors, the inner product is always used. When multiplying a matrix with a
vector the number of columns or rows must be the same as the number of elements in the vector. If v
is a vector and m is a matrix, then

v*m

will produce vector if the number of elements in v is the same as the number of rows in m, otherwise
an error message will be shown. In the same manner,

m*v

will produce a vector only if the number of columns in m is the same as the number of elements in v.

Note that a vector in QLang does not have a "direction"; there are no explicit column or row vectors.
If you want to be explicit when handling column and row vectors, they must be declared as matrices.
For example, the following two functions produce the same scalar result:

out number v_mult () {

vector (number) v = [1, 3, 5];

matrix (number) m = [[4, 5, 6], [2, 1, 7], [3, 5, 2]];

return v* m* v;

}

out matrix (number) m_mult () {

matrix (number) v_row = [[1, 3, 5]];

matrix (number) m = [[4, 5, 6], [2, 1, 7], [3, 5, 2]];

return v_row * m* transpose (v_row);

}

Note that in the first case the QLang compiler will know that a scalar always will be returned, if the
code could be run. In the second case the dimension of the result is dependent of the dimensions of
the matrices, if they are changed. So the function has to be declared as a matrix.

3.7.10 Series

The series is a special form of aggregate, based on one or more range objects. The ranges describe a
multidimensional space, and to each point corresponds one element that can contain any object,
vector or matrix. Each element must, however, contain the same type of object.

As opposed to a vector or a matrix, the series contains information about the range that has been used
to produce the aggregate object. Therefore, series are very useful when dealing with historical time
series data, or when producing graphs with equidistant values on the x-axis. For example, a series can
contain a date range together with prices on an instrument for the date range. A series can be
converted to a vector, but then the information about the range is lost.

In practice, a series is a compact way of making the familiar 'for-loop' construction, and keeping the
information about the range. To construct a series you can either call a function with a series return
type or use the keyword series. When defining a variable of any type of series or using a series as a
return type you have to specify the series. it is done with the following syntax:

series <loop_type>(calculation_type)

Page 36

where loop_type is the type of the loop variable, for example a number or a date, and
calculation_type is the type of the values calculated, for example a number, an instrument, a
vector(number) etc.

This is an example of a one-dimensional series:

number myHelpFunction(number x)

{

 return x * x;

}

out series <number> (number) myOutExpr()

{

 return series (i : 1, 10, 1; myHelpFunction(i));

}

The first function takes one number argument and multiplies the number with itself. The second
function calculates the content of a series. In the return type we have specified that the loop goes over
numbers and the resulting values will be numbers as welƭΦ ¢ƘŜ ŦƛǊǎǘ άŀǊƎǳƳŜƴǘǎέ ƛƴ ǘƘŜ ǎŜǊƛŜǎ ŘŜŦƛƴƛǘƛƻƴ
(before the semi-colon) are defining the range, as it states that the loop variable i will start at one and
go to ten with step one. The last argument is the expression that is evaluated for each value of each
loop variable. The return object will be a series of ten numbers: 1*1, 2*2, and so on. When the function
myOutExpr is attached to a table you will se the range in the first column and the result from
myHelpFunction in the second column.

The series function is often used to loop over time series data having dates as input or over numeric
values for curve creation, in particular when creating graphs.

Important news! In Quantlab workspaces, or lib files, created in version 2.4 or earlier, you must change
the series definitions. The type of the loop variable has to be specified and the range function has to
be removed. Note also the use of semi-colon in the series definition. It is no longer possible to create
multi-dimensional series of the type series<date><number> Χ

It is also possible to create a series where each element is a vector or matrix. One common way is to
use the vector expansion, as in the following example:

series <number>(number) my_series (number x){

 return series (t : 1, 10; x* t ^2);

}

out series <number> (vector (number)) vector_series () {

 vector (number) v = [1, 4, 6];

 return my_series (v);

}

There only exists series of vectors, not vectors of series. But series of vectors can for example be
efficiently applied when calculating time series dependent statistics for several financial instruments,
stored in a vector.

It is possible to do vector algebra manipulations on a series of vectors, for example taking a scalar
product:

out series <number> (number) series_prod(){

 series <number> (vector (numb er)) y = series (t: 1, 10; [1, t, t^ 2]);

 vector (number) x = [1, 2, 3];

 return y*x;

}

Page 37

A financial application of this could be to calculate the value of a portfolio; then y would contain daily
prices for a number of assets and x the corresponding asset holdings (constant over time). Then the
series_prod would give the daily value of the portfolio.

In general, vector manipulation, such as inner product or concatenation, can be done on two series of
vectors, affecting each vector separately, for example:

out series <number> (number) series_prod2(){

 series <number>(vector (number)) a = series (t:0, 10; [t, t*t]);

 series <number>(vector (number)) b = series (t:0, 10; [2*t, 2*t*t]);

 return a*b;

}

where a vector of number is returned, or:

out series <number> (vector (number)) series_concat(){

 series <number>(vector (number)) a = series (t:0, 10; [t, t*t]);

 series <number>(vector (number)) b = series (t:0, 10; [2*t, 2*t*t]);

 return concat(a,b);

}

where a series of vector with four elements is returned.

It is also possible to retrieve particular elements from a series using brackets []. The index value within
the brackets starts at zero for the first element and then increases by one for each element,
independently of the range type. For example,

out number test(){

 series <number> (number) x = series (t: 5, 15; t^2);

 return x[0];

}

This function will return 25.

There is a possibility to expand over a series similar to vector or matrix expansion (3.7.7). For example
you may write a function f that takes to scalars and call it by two series<number>(number):

number f(number x, number y) = x*y;

out series <number>(number) s(){

 series <number>(number) s1 = series(t: 1, 10; t^2);

 series <number>(number) s2 = series(t: 1, 10; t);

return f(s1, s2);

}

The function s will return a series of number with the index range going from 1 to 10. This possibility
can also be useful when you want to plot a scatter graph using two series of number. Then you can
create a series of points:

out series <date> (point_number) scatter(instrument_name i_n1, instrument_name i_n2,

date from, date to){

 series <date> (number) s1 = series (t: from, to ; instrument(i_n1, t).quote ());

 series <date> (number) s2 = series (t: from, to ; instrument(i_n2, t).quote ());

 return point(s1, s2);

}

This function can be attached to a graph.

Some other examples of how to use series objects are found in 8.1, 8.8 and 8.10.

Page 38

3.8 Flow control

QLang supports common flow control structures: if/else, while, do/while, for and try/catch.

3.8.1 If, else, do and while

These structures work like in C/C++ (and many other languages), using a logical expression, called
condition in the example below. The if statement has the following syntax:

if (condition){

 true_statements ;

}

else {

 false_statements ;

}

Alternatively, the else part can be conditional as well:

if (condition){

 statement ;

}

else if (condition) {

 statements ;

}

The while statement is used for iterated calculations, depending on a condition:

while (condition){

 loop_if_true_statements ;

}

The statement can also be executed before the conditional test:

do{

 loop_until_false_statements ;

}

while (condition);

3.8.2 The for loop

The for loop has been changed in version 3.0 in order to be in line with C++. Thus the loop variable has
to be explicitly defined (in or before the for-loop), and the start and stop criteria as well as the step
can be defined more elaborately. Here is one example using a range from 0 to 10 with a step size of 2,
and another example using a date range from 1 of March 2002 to 31 of March 2002.

for (number t = 0;t <= 10; t = t+2){

 loop_statements;

}

for (date t = #2002 - 03- 01; t <= #2002 - 03- 31; t++){

 loop_statements;

}

This means that if you use 0 as start and < as end condition the for loop will correspond naturally to
the vector indices. Note that for loops in workspaces created in version 2.4 include the end point which
corresponds to a <= end condition. Assume you have the following code in Quantlab 2.4:

out vector (number) for_24(){

 vector (number) x[10];

 for (i:0, v_size(x) - 1)

 x[i] = i;

 return x;

Page 39

}

This should in Quantlab 3.0 be changed to:

out vector (number) for_30(){

 vector (number) x[10];

 for (number i = 0; i<v_size(x); i++)

 x[i] = i;

 return x;

}

For your convenience, it is not necessary to change the for loop in Quantlab 3.0 as the old syntax is still
valid. However, you are advised to make the change as the old style for loop may be obsolete in later
versions. Note that for loops using the range function are not valid as the range object class is obsolete
already in version 3.0.

3.8.3 The switch statement

The switch statement is a substitute for nested if/then/else statements that compare a variable to
several "integral" values (such as a number or an enum). The basic syntax is outlined below:

switch(<variable>)

{

 case first_value:

 < statement to execute when variable equals first_value > ;

 break ;

 case second_value:

 < statement to execute when variable equals second_value > ;

 break ;

 default :

 < statement to execute when variable does not equal any of the cases >

;

 break ;

}

Here is an example of how to use the switch statement.

out string spell_number(number n)

{

 switch (n)

 {

 case 1:

 return ("One") ;

 break ;

 case 2:

 return ("Two") ;

 break ;

 case 42:

 return ("Fortytwo") ;

 break ;

 default :

 return ("Dunno") ;

 break ;

 }

}

Page 40

3.8.4 Error handling: Try and catch

Try and catch allow handling of errors that may occur. The syntax of the try-catch statement is the
following:

try {

 < statement > ;

 }

 catch (error_type1){

 < statement > ;

 }

 catch (error_type2){

 < statement > ;

 }

 <...>

catch {

 < statement > ;

 }

The catch statement takes an error_type as input. To catch all types of errors, the catch statement can
be written without parentheses and argument. The following error types are available in version 3.0:

TYPE NAME Old name Description

E_ABORTED N/A Aborted calculation.

E_CALC 'calc' A calculation was unsuccessful, for example "Fit failed" in
a zero-coupon estimation.

E_CONSTRAINT 'constraint' Element-wise call using for example different sizes of
vectors.

E_DATABASE 'database' A database communication failure, for example an
attempt to retrieve a quote in a quote field that is not
defined for an instrument.

E_ENUM 'enum' Invalid enum string, for example Invalid rate_type.

E_INIT N/A Not initialized object.

E_INVALID_ARG 'invalid_arg' Invalid argument to a function.

E_IO N/A I/O error.

E_NAME_LOOKUP 'name_lookup' Error in external name lookup, for example Unknown
instrument.

E_NO_DATA 'no_data' Data is missing, for example in a price quote.

E_NULL 'null' An attempt to use a null value, for example as a condition
in an if-statement.

E_PARSE N/A Parse error.

E_RANGE 'range' Index out of range, for example in a vector.

E_REALTIME N/A Realtime feed error.

E_TIMEOUT N/A Time out error.

E_UNSPECIFIC 'unspecific' All other errors.

Page 41

The categories E_CALC and E_NO_DATA are "soft" errors, i.e., those that Quantlab handles and
converts to null output values if the user does not handle them. The others are "hard" errors: if the
user wants to ignore them, they must be taken care of in a try-catch statement.

Here is an example of how to use the try-catch statement.

out number f (number n) {

vector (number) a = [1, 2, 3];

 try {

 return a[n];

 }

 catch (E_RANGE){

 return 4711 ;

 }

 catch (E_INVALID_ARG){

 return 17;

 }

 catch {

 return 42;

 }

}

If n is between 0 and 2 the function will return the corresponding element of a. Depending of the type
of error that may occur because of the argument n, the function returns other numbers instead (4711,
17 or 42).

Here is another example of how to use try and catch in combination with the throw() function:

out number f (number x){

try {

 if (x == 1) throw (E_UNSPECIFIC, ' hello');

 if (x == 2) throw (E_RANGE, ' hi');

 else return x* 10;

}

catch (E_RANGE) {

return x* 7;

}

}

In this case we produce errors and throw them, depending of the value of x. If x is equal to two, the
range error is caught and 14 is returned, but if x is equal to one, the unspecific error will appear in the
warnings window with the text 'hello' and the function evaluation is terminated.

Sometimes it is useful to get hold of the error message. This can be done using a variable called "err"
which is of the object type error. This variable is created by Quantlab when an error is produced and
it is available within the catch statement. Here is an example of how it can be used:

out string test(number n){

 try {

 vector (string) x = [' Hello' , ' Ciao' , ' Salut'];

 return x[n];

 }

 catch (E_RANGE){

 return err.message();

 }

}

3.9 Comments

Comments are created with // at the beginning of the row or by using /* and */. Here are examples
of the two possibilities.

Page 42

// A one - line comment

/* A comment using

two lines */

Important news! The old style comment using % is no longer valid. Please use // instead.

3.10 Debugging

The Quantlab debugger enables the developer of QLang code to debug one or several functions
attached to graphs or tables. It is important to notice that what you actually debug is a selected
attached expressions with the input parameters given by the user interface. Follow the procedure
below to debug the code:

1. In the workspace window, select an attachment (i.e., the function name to the right of the
graph or table symbol) and click the right mouse-button. Then select Debug and the
corresponding attachment will be marked in debug mode. Repeat this for other expressions
that you want to debug within the same session.

2. Double-click an attachment in the workspace window. This will activate the corresponding
expression window and put the cursor at the first row of the expression.

3. From here, you can set breakpoints by putting the cursor at a executable row and pressing F9
or by clicking the left mouse-button in the left margin of the edit window. A red circle will
appear to indicate a breakpoint.

4. In the workspace window, double-click on the view with the attachment that you want to
debug. This will activate the graph or table. Input desired values for the parameters and press
Recalc.

5. The debugger will execute the code of the attached expressions marked with Debug until a
breakpoint is encountered.

6. Step in the code by using the function keys:
Press F5 to continue to next breakpoint,
Press F11 to step into each row of code,
Press F10 to step over,
Ctrl-F5 to finish debugging

When debugging you may inspect the call stack and the values of local and global variables by selecting
View | Debug |Call stack or View | Debug | Variables. Vectors may be expanded by clicking the + sign
in the list.

3.10.1 Immediate window

You can also inspect variables and expressions in an "Immediate-window". Choose Debug | Immediate
window to get a dialog where you can input simple expressions and evaluate them while debugging.
For example, you can examine instrument objects by taking out yield, price etc or you can view a
separate element in a vector by using brackets.

Page 43

4 ²ǊƛǘƛƴƎ ƭƛōǊŀǊȅ ŦƛƭŜǎ
All functions written in an expression window can only be accessed within the workspace. To create
functions accessible to all workspaces you can write library files. The path to these files must be set in
the first path edit box in Tools | Options | Extended, separated with semi-colon (;).

4.1 Creating library functions

In the workspace browser click the right mouse button and select Show Library. This will open folders
corresponding to the paths in Tools | Options | Extended. The first folder is the built-in ql_libs to which
a path does not have to be set. Select File | New Library File and create a new file in a chosen folder.
This folder will be added to the path if it is not already there.

Write the following code in the expression window corresponding to the library file:

number my_lib_function(number x)

option (category: ' Test')

{

 return x*x;

}

The keyword option is in this case used for defining the category for the function. This means that a
folder called Test will appear in the Function browser, containing the function my_lib_function.

Choose Expr | Compile All which will compile your library file together with all other library files. Now
you can open the Function browser and inspect your function. Save the library file by clicking the right
mouse-button on the corresponding file symbol in the folder, and selecting Save, or use the menu File
| Save Library File.

4.2 Writing overloaded functions

It is possible to define overloaded functions, i.e., functions with the same name as another function
but having other parameter definitions. For example you can define several functions with the same
name and return type but with different types of a parameter. Or you can define several functions with
different number of parameters. Of course, all overloaded functions must have the same return type.

4.3 Adding member functions to object classes

In library files you can write functions that are treated as member functions to existing Quantlab
objects. This means that you can for example hook on your own valuation methods or you can add
methods giving real-time or database data. We illustrate this with two examples.

4.3.1 Adding a valuation method to an instrument

In this example we will show how to add a function giving a number output to an instrument object. A
member function is created by using the dot-notation that also is used when calling the function:

number instrument.my_price(instrument i, number param){

 number answer;

 // Some clever calculationsé

 return answer;

}

The first argument to the member function must be the object itself. After you have compiled the
library file this function will appear in the member function list of the instrument object.

Page 44

4.3.2 Adding a quote field method to an instrument

In this example we will show how to add a member function to an instrument that returns a turnover
volume for that particular instrument.

First, you have to define the appropriate quote field in the database. See the manual for DatabaseTool
for further information on this subject. Start by defining a new quote field by entering a new row in
the table QuoteDef.

QUOTE_NAME QUOTE_TYPE QUOTE_COLUMN_NAME FID_COLUMN_NAME REAL_QUOTE

volume number volume volume 0

The volume is of the basic QLang type number and refers to a column in the Quote table that has to
be defined, and which in this case is called volume. If you want to have real time data, you also have
to define a new column in the table RealtimeLink called volume. There you write the FID number for
the volume for each instrument. The last column is set to zero which means that this quote is not a
"real quote", i.e., it cannot be used as a quote_side when pricing instruments.

Now you have to define a member function that retrieves this data. This is simple as you only have to
call the member function get_quote_num which gives any numeric quote, given the name in the
QuoteDef table:

number instrument.volume(instrument i){

 return i.get_quote_num(' volume');

}

After you have compiled the library file this function will appear in the member function list of the
instrument object.

The string parameter of the get_quote functions is not limited to the type quote_side.

If you try to access a quote_side that is not defined for an instrument, this will give a runtime error of
the type 'database'.

4.4 Writing help text for library functions

Help to functions written in a library file may be accessed from the function browser by using special
XML-like tags within the library file.

If we for example have a function looking like this:

string repeat_string(string str, number times)

{

 string tmp = str;

 for (i: 2, times, 1)

 tmp = strcat(tmp, str);

 return tmp;

}

our help may look something like this:

/*

<help func=repeat_string>

<info>Repeats a string multiple times</info>

<param name=str>The string to repeat</param>

<param name=times>The number of times the string should be repeated</param>

<return>Returns the s tring concatenated with itself several times</return>

Page 45

<remark>This function only works when the times variable is larger than or equal to

2</remark>

</help>

*/

The help may be written anywhere within the same library file but it must be within comments,
otherwise the compiler will complain.

For member functions that you add to existing object classes (see 4.3) you will have to write the object
class name before the function name as in this example on the instrument object class:

<help func=instrument.my_instr_member_function>

The following tags are used for specifying the various paragraphs in the help section:

help The help tag must enclose the whole help section. It has the 'func' attribute which is
the name of the function.

info This text will be written above the function declaration.

param Parameters help. A function may have several parameters and they are identified by
the 'name' attribute.

return Help on what the function returns.

remark Any remarks.

example Example of how to use the function.

You do not have to use all tags within a help section.

After writing the function the help file must be created. This is done from the menu Tools | Advanced
| Generate user help. This operation searches through all the loaded help files and creates help files in
HTML format. The function browser is updated automatically. The help files are saved in the help/user
folder under the Quantlab install directory. An important file in that directory is the template.htm file
which is a template used to create the help. By altering this file it is possible to change the style of the
generated user defined help files.

Page 46

5 ¦ǎƛƴƎ ǘƘŜ /ha ƛƴǘŜǊŦŀŎŜ
This is a condensed version of the chapter with the same heading in the API manual "The Quantlab
API".

All QLang functions, including your own functions in library files and dll:s, can be exposed via COM to
Visual Basic. The function definitions are generated by producing a tlb-file. To produce such a file from
Quantlab, proceed as follows.

Save your library files in the path that you set in Tools Options, and restart Quantlab.

Choose Tools, Advanced, Generate Type Library.

To access the QLang functions from VBA in MS Excel, start VBA and verify under Tools, References,
that the Quantlab COM Library is in the list and is active. If it does not appear in the list you have to
browse to the COM library file qlab31.tlb in your Quantlab folder.

In the object browser in VBA all Quantlab functions appear in the ql object with their function
definitions. To get more help on each function, use the function browser in Quantlab.

See the manual for the Quantlab API for more information about the COM interface.

Page 47

6 ¦ǎƛƴƎ ǘƘŜ LƴǘŜǊπvǳŀƴǘƭŀō /ƻƳƳǳƴƛŎŀǘƛƻƴ {ŜǊǾŜǊ π Lv/
Some applications have the need of sharing information between them. There are many ways of
solving such user interaction depending on the available it-infrastructure. A common method is by
using a common database where users can read-and-write information. For some applications where
data is of a streaming type with very frequent updates a more direct communication might be better.

Having an IQC server in place will create such a direct communication bridge between users of the
Quantlab clients, regardless if they are using Quantlab through an Excel sheet or direct.

The IQC server will mimic a real-time source feed such as Reuters or Bloomberg. The difference is, of
course, that you have to provide the IQC with your own streaming data coming from a Quantlab user
within the community.

To get some feel for what the IQC can do we will look at two different examples. First we will create a
chat room where Quantlab users can send and receive messages to and from a bulletin board. Secondly
we will create a market data feed where a market maker can internally distribute some spreads for an
illiquid bond pricer.

First we will look at how to install the IQC server

6.1 Step-by-step installation of the IQC on the server

The IQC server is only needed on one server/pc. All Quantlab clients can then communicate using the
same server node.

Using the command line - go the folder containing the iqcs.exe programme.

Install the service using the following syntax:

C:\> iqcs ςS service_name description [-p=port] [-f=state_file]

Go to the services window in the control panel and start the service.

It is also possible to run the IQC server in non-service mode ς in this fashion:

C:\> iqcs ςs [-p=port] [-f=state_file]

It will then service requests until the process is terminated.

The IQC service can be un-installed with the ςU command:

C:\> iqcs ςU service_name

Page 48

6.2 Creating a connection to the IQC server from the Quantlab
client

In the same folder as the Quantlab.exe there should be a file called iqc24.qrt or iqc30.qrt depending
on the version of Quantlab. This file is the local communication program that will give the
user/programmer the function library used for reading and publishing information to the central IQC
node.

In the qlab30.ini file the following tag will tell Quantlab that there is an additional real-time source
ŀǾŀƛƭŀōƭŜΦ Lƴ ǘƘƛǎ ŜȄŀƳǇƭŜ ǘƘŜ Lv/ ǎŜǊǾƛŎŜ ǿŀǎ ƛƴǎǘŀƭƭŜŘ ƻƴ ŀ ǎŜǊǾŜǊ ŎŀƭƭŜŘ άǉƭōƘƛƭƭέΦ LŦ ǘƘŜ ƛƴǎǘŀƭƭŀǘƛƻƴ ƻŦ
the IQC service was on your local pc, this would be the name of your pc.

iqc {

 dll = 'iqc30.qrt'

 feed = 'IQC'

 server = 'qlbhill'

 ǇƻǊǘ Ґ ΨптммΩ

 }

For Quantlab 2.4x the equivalent information is found in the registry in the rt tag.

Now we are ready to start Quantlab and see in the lower right hand corner (green icon) that the IQC is
connected as a real-time source.

Page 49

6.3 Example of creating a chat room using IQC

[ŜǘΩǎ ǎǘŀǊǘ ǿƛǘƘ ǿǊƛǘƛƴƎ ǎƻƳŜ ŎƻŘŜ ǘƻ ǇǳōƭƛǎƘ Ǌƻǿǎ ǘƻ ǘƘŜ ŎƘŀǘΦ

out result send(string user, out string message)

{

 string result = message;

 if (!null(message) || message != "") {

 iqc_publish("IQC", "chat",

 ["user", "time", "message"],

 [user, sub_string(str(now()), 11, 8), message]);

 message = "";

 }

 return result;

}

We create a function that takes the name of the user and a message as input. The message we declare
ŀǎ ŀƴ άƻǳǘέ ǇŀǊŀƳŜǘŜǊ ǿƘƛŎƘ ƳŜŀƴǎ ǘƘŀǘ ƛǘ ǿƛƭƭ ōŜ ŎŀƭƭŜŘ ōȅ ǊŜŦŜǊŜƴŎŜΦ Lƴ ǘƘŜ ǳǎŜǊ ƛƴǘŜǊŦŀŎŜ ǿŜ Ŏŀƴ
then clear the message box as we reference the message variable and set it to an empty string.

The iqc_publish function takes four input arguments;

ǘƘŜ ƴŀƳŜ ƻŦ ǘƘŜ ŦŜŜŘ όƘŜǊŜ άLv/έύ

ǘƘŜ ƴŀƳŜ ƻŦ ǘƘŜ ƛǉŎ ƛŘŜƴǘƛŦƛŜǊ ǘƘŀǘ ǿƛƭƭ ƘƻƭŘ ƻǳǊ ƛƴŦƻǊƳŀǘƛƻƴ όƘŜǊŜ άŎƘŀǘέύ

a vector or field identifiers for the different bits of information in the iqc identifier

a corresponding vector with data for each field in the identifier.

Page 50

!ǎ ƛƴŦƻǊƳŀǘƛƻƴ ǿŜ ǎŜƴŘ ǘƘǊŜŜ ǎǘǊƛƴƎǎ ǘƻ ǘƘŜ άŎƘŀǘέ ƛǉŎ-identifier each time the function is called. This
information will replace the old information that was last updated in the same way as the last price of
a stock coming in the market data feed.

After we have published the user name, timestamp, and message we clear the message.

In order to keep track of the history of the chat we can now create a function that will subscribe to the
iqc identifier and its fields and then store all incoming messages in a local vector.

We do not need to ask the iqc server if there is any new information. The iqc server will push any new
messages out to all clients that are connected and listening on a particular identifier. Again, in the
same way as Quantlab would be triggered by a tick from a quote in the real-time feed from Reuters or
Bloomberg.

vector(string) v_ chat;

out vector(string) recv()

{

 push_back(v_ chat, strcat(["[",

 realtime_str("chat", "time", "IQC"), "] ",

realtime_str("chat", "user", "IQC"), ": ",

realtime_str("chat", "message", "IQC")]));

 return v_ chat;

}

First we have created a global variable (locally in the workspace) called v_chat. This vector of strings
will hold all our received messages from the chat.

{ŜŎƻƴŘ ǿŜ ŎǊŜŀǘŜ ŀ ŦǳƴŎǘƛƻƴ άǊŜŎǾόύέ ǘƘŀǘ ǿƛƭƭ ŜȄŜŎǳǘŜ ŀǘ ŀƴȅ ǘƛƳŜ ǿƘŜƴ ǘƘŜ ŎƘŀǘ ƛŘŜƴǘƛŦƛŜǊ Ƙŀǎ ŀƴ
updated data in it. The push_back function will just add another concatenated string into the v_chat
variable. The function realtime_str() is a generic function that can be used to listen to realtime
information streaming into Quantlab. It takes three arguments; the iqc identifier, the field identifier,
and the name of the feed.

We can now attach both the send and receive functions to two tables in the user interface and we can
start chatting.

Page 51

Lǘ ǿƻǊƪǎΗ !ƴŘ ǘƘŜ ŎƻƭƭŜŀƎǳŜǎ ƘŀǾŜ ŀƭǊŜŀŘȅ ǎǘŀǊǘŜŘ ǇǳǎƘƛƴƎ ƳŜǎǎŀƎŜǎ ƻŦ ǘƘŜƛǊ ƻǿƴ Χ

6.4 Example of feeding some market-maker corp spreads

We will create a mini-workspace with a table where the market maker can do manual input for three
corporate bond spreads. Then we will create a user workspace that will price these bonds in terms of
a base curve plus the spread published by the market maker.

vector(string) v_instr_name = ['CORP_BBB_1Y','CORP_BBB_5Y','CORP_BBB_10Y'];

out void publish_spread(out vector(number) v_spread) {

 for(i:0,v_size(v_spread) - 1)

 iqc_publish('IQC', v_instr_name[i], ['mid'], str([v_spread[i]]));

}

Above is the code for the publishing part of the exercise. We place our three instrument names in a
Ǝƭƻōŀƭ ǾŀǊƛŀōƭŜΦ ¢ƘŜƴ ǿŜ ŎǊŜŀǘŜ ŀ ŦǳƴŎǘƛƻƴ ǿƛǘƘ ŀƴ άƻǳǘέ ǾŜŎǘƻǊ ŀǎ ƛƴǇǳǘ ŀǊƎǳƳŜƴǘΦ ²ƘŜƴ ǘƘŜ ŦǳƴŎǘƛƻƴ
is attached to a table the v_spread vector will be available for input by the user.

Page 52

The loop will for each spread in the vector publish an iqc identifier and for each of these identifiers a
mid quote.

In the second part we create some subscription code that will use the published spreads.

out vector(point_number) yields(cu rve_name base_c, date d, quote_side q){

 vector(number) v_maturity = [1,5,10];

 fit_result f = bootstrap(curve(base_c, d, q));

 vector(number) zero_yields = f.zero_rate(0,v_maturity,RT_CONT);

 vector(number) s = str_to_number(realtime_str(v_instr_name,

'mid','IQC'))/10000;

 return point(v_maturity,(zero_yields + s)*100) ;

}

We have a function that will return a vector of points that we can attach to a graph. As input to our
function we will allow the user to choose the base curve to price the bonds from. We will also allow
the user to choose for which date to take the market quotes for the base curve as well as the quote
side.

The base curve will be stripped from coupons to a zero coupon curve before we use it for pricing. We
have chosen the bootstrap method. From the fitted curve we extract the zero yields for the maturities
of our corporate bonds.

We then subscribe to the published corporate bond spreads using the realtime_str() function and
divide the basis points with 10000.

It is now easy to return the three bonds zero yields as the sum of the base curve and the spreads.

[ŜǘΩǎ ƭƻƻƪ ŀǘ ǘƘŜ ǿƻǊƪǎǇŀŎŜ ǿƘŜƴ ǿŜ ƘŀǾŜ ŀǘǘŀŎƘŜŘ ǘƘŜ ŦǳƴŎǘƛƻƴǎ ǘƻ ŀ ǘŀōƭŜ ŀƴŘ ŀ ƎǊŀǇƘΦ

Page 53

For every time the market maker updates any of the spreads in the spread vector in his Quantlab
workspace, the pricing will immediately be pushed to all other users listening to these iqc identifiers.

Page 54

7 hǳǘǇǳǘ π ǘŀōƭŜǎ ŀƴŘ ƎǊŀǇƘƛŎǎ
Quantlab is designed for both the developer and the end-user of the analytics. To display analytics in
a pedagogic yet comprehensive way, Quantlab have three different "display objects" to choose from.
The expressions can be displayed in a graphical window and/or in a table. There are two table types, a
general-purpose table where any scalar, vector or matrix can be displayed and a special-purpose table
for instrument display.

7.1 General purpose table

A general-purpose table can be created on the menu Insert | Table or by pressing Ctrl T. This table type
will display any scalar, vector or matrix expression. Multiple expressions can be attached to the table.

7.1.1 Attaching an expression to a table

Let's look at a simple example. Open a new workspace by the menu File | New workspace and insert
an expression window by the menu Insert | Expression. Then type the following:

// Example expression to paste in a general table

out series <number>(number)my_expr(number n) = series (i : 0, 10; i*i);

Compile this expression using the menu Expression | Compile, or press F7. If you have the workspace
browser open (View | Workspace browser) then you will see a + sign to the left of the Expression
window. Click the + sign and you will see the symbol for the function my_expr. Now, insert a table
using the menu Insert | Table. Drag the expression my_expr from the workspace browser (pressing
the left mouse button) and drop it on the table.

The result should now look something like this.

Example workspace with the my_expr function

You can now see the attached expression "my_expr ς 1" in the workspace browser by clicking the +
sign to the left of the table symbol. The number behind the expression name will help in keeping track
of which instance of the expression you are working with.

Page 55

The table will now display an input box for the user to input a value for the parameter n. A table will
recalculate when the return key is pressed, or by pressing the "Recalc" button. If the table includes any
real time data in the expression the table will update on any changed data.

When attaching expressions to tables or graphs Quantlab always creates auto-generated controls
which correspond to the types of the parameters. If you want several parameters to be determined by
the same control you can use the Parameters Options dialog, as described in 7.4.4.

Page 56

7.1.2 Table options and formatting

Parameter canvas

Clicking on the close x, in the upper right hand corner, hides the parameter canvas displayed in the
table. The same function will show by right clicking on the canvas and using the menu choice Hide
Parameters.

Formatting the table

By right clicking on the header a number of formatting options are available:

Format Attachment |
Color and border

Change colour settings and border style

Format Attachment |
Font

Change font size and style

Format Attachment |

Number

Change the number formatting of the selected column

Format Attachment |
Text alignment

Change the horizontal alignment of any text in the cells

Auto format Let the font be dependent on the value in the cell (only for numerical
attachments). See 7.1.4.

Column order Change order of presentation when multiple functions are used

Minimal frames Will display table with minimal frame

Display name Change the header name of the column. Dynamic header variables
reflecting the current parameter setting can be inserted by double-
clicking on the parameter.

Rename table Change the name of the table

Holiday Set a holiday calendar for the table. For expressions having date ranges
the relevant holidays will be suppressed in the table.

Hide/show parameters Switch the parameter view on and off

Duplicate Will make a copy of the table.

By right clicking on a specific cell, or multiple selections of cells, the same formatting options are
available by choosing Format Cell. Cell(s) are available for formatting when the selection turns black.

Changing attachment order

The attachment order can also be changed using drag and drop of columns. Put the curser on a column
header, press Ctrl and use the left mouse-button to drag the column to the desired location.

Merging parameters

The parameters that are needed in order to evaluate functions attached to tables can be merged to
common controls. This is done in the same way as for graphs, see 7.3.2.

Page 57

Transposing the table

The table can be transposed so that columns and rows change places. Right click on the table and
choose Transpose.

7.1.3 Vector parameters in general tables

When several input values of the same type are needed for a calculation it is convenient to use a vector
parameter. When attaching an expression containing one or several vector parameters they will show
up within the table. By clicking the right mouse-button on the column head it is possible to set or
change the number of rows in the vector, by choosing "Input parameters|Set rows". If you know that
all input vectors will be of the same length, you may use the choice "Set entire row". Note that
sometimes it may be necessary to check the size of the input vectors in the code.

Vector parameters can be merged within a table as other parameters. They appear in the Parameters
options dialog in a separate attachment symbol.

For some examples of how to use input parameters, see the case studies in 8.6 and 8.7.

7.1.4 Automatic text formatting

In financial applications it is often useful to format the text (or numbers) in a table depending on the
values shown, or other parameters. By right-clicking the column header of an attachment you can
choose Autoformat. This gives the possibility to set up simple rules that changes the font and/or
background colour depending on the number in each cell.

For more complicated situations there is a possibility to set the font and background colour from the
code. The background colour can also be transient in order to flag for a change. For this purpose we
have created the object text_rgb that can be attached to a table. This object is created by calling the
function with the same name:

text_rgb (text , [fg], [bg], [transient_bg])

where text is the text as a string, fg is the font (foreground) colour, bg is the backround colour and
transient_bg is a logical parameter that makes the background colour transient if true. The colours are
given as RGB-triplets and can easily be defined using the function rgb(), for example:

rgb(255,0,0) (Red)

rgb(0,255,0) (Green)

rgb(0,0,255) (Blue)

rgb(0,0,0) (Black)

For an extensive example of the use of auto-formatting, see 8.13.

7.2 The instrument table

Instrument tables are possible to use in Quantlab 3.0 but are not recommended as the effect of an
instrument table can be obtained through an ordinary table.

Page 58

The instrument table is specially created for displaying lists of instruments and other input/output that
refers to these instruments. The instrument table is itself defined by a vector of instruments and a date
for which any evaluation should be done. Any function or method that can be used on an instrument
can then be displayed in the table. The user can for certain settings change the instrument vector and

evaluation date. There is also the possibility to define the instrument
vector through a function, see below.

7.2.1 A standard instrument table

We will describe the standard instrument table using an example: We
want to display a list of bonds and their current prices and durations.

Insert a new instrument table from the menu Insert | Instrument table.A
"wizard" will ask for which date and which instruments to initially display.
Here is shown the left side of this dialog.

In the date option, only the parameter choice will give the user of the
table a possibility to change the date again. The other two options will fix
the date for the table permanently.

Either you can let the quote side be a parameter for the user to change,
or you can use the fix value (which is defaulted to the value under Tools

Options.

If your Quantlab already is prepared with curves, choosing a complete curve is obviously convenient.
If not, instruments can be chosen from the list of available instruments.

Tip! If you have no curves defined in your Quantlab database, it is easily done from the Database tool
that was shipped with your Quantlab installation. See separate manual for further instructions.

The table is now created with your initial choice of date and instrument selection. User controls have
also been added to the table. Next step will be to add our needed information about the instruments
chosen.

Now to some simple programming1: We will need to create an expression having three instrument
methods in order to get the name, price, and duration. For more functions see the function index.

// Example of some functions that apply for instruments

out vector (instrument_name) N ame (vector (instrument) i) = i.name();

out vector (number) D irty_price (vector (ins trument) i) = i.dirty_price();

out vector (number) D uration (vector (instrument) i) = i.mac_dur();

Note! Any code written to display functions in an instrument table must have the vector of instrument

as the last argument.

1 See chapter 3 for more information about programming details. In this example we have created functions that

take a vector of instruments as input argument. Since the instrument table at creation uses an instrument vector
as base, the methods will be evaluated for all instruments in the vector.

Page 59

Compile (press F7) and confirm that the expressions appear in the workspace browser. Now it is simple
to drag-and-drop the instrument information to the instrument table. The result should look
something like in the following picture.

Example of an instrument table with three columns (showing Swedish government bills and bonds)

One of the special features of the instrument table is that it will automatically evaluate any expression
over all the instruments in the chosen vector. A general-purpose table cannot do this.

7.2.2 Formatting the instrument table

By right clicking on the header a number of formatting options are available:

Sort Will sort the table according to the chosen column

Format Attachment |
Color and border

Change colour settings and border style

Format Attachment |
Font

Change font size and style

Format Attachment |

Number

Change the number formatting of the selected column

Format Attachment |
Text alignment

Change the horizontal alignment of any text in the cells

Auto format Let the font be dependent on the value in the cell (only for numerical
attachments)

Column order Change order of presentation when multiple functions are used

Minimal frames Will display table with minimal frame

Display name Change the header name of the column. Dynamic header variables
reflecting the current parameter setting can be inserted by double-
clicking on the parameter.

Page 60

Rename table Change the name of the table

Holiday Set a holiday calendar for the table. For expressions having date ranges
the relevant holidays will be suppressed in the table.

Hide/show parameters Switch the parameter view on and off

Duplicate Will make a copy of the table.

By right clicking on a specific cell, or multiple selections of cells, the corresponding formatting options
are available by choosing Format Cell. You can select multiple columns or cells by using the left mouse
button. Cells or column headers are available for formatting when the selection turns black.

The attachment order can also be changed using drag and drop of columns. Put the curser on a column
header, press Ctrl and use the left mouse-button to drag the column to the desired location.

Note! The parameters that are needed in order to evaluate functions attached to tables can be merged
to common controls. This is done in the same way as for graphs, see 7.3.2.

7.2.3 Creating instrument tables using an instrument vector function

It is possible to create instrument tables based on a vector of instrument that is defined through a
function. If you write a function returning a vector of instruments, for example,

out vector (instrument) my_v_i(curve_name c_n, date d){

 return curve(c_n, d).instruments();

}

this function will be possible to select in the right hand side of the Modify-dialog of the instrument
table. Then the instrument table will iterate over the vector that this function delivers.

The instrument vector function will always be calculated before any other function is evaluated in the
table, see 7.5.3. And the evaluation of an instance of this function causes the evaluation of all other
functions in the instrument table, as they are dependant on the instrument vector. This is a typical
case when dealing with real-time data. It the date d in the functioƴ ŀōƻǾŜ ƛǎ ŎƘƻǎŜƴ ǘƻ ōŜ ǘƻŘŀȅΩǎ ŘŀǘŜΣ
then by default the instrument vector will be updated with real-time updates on the quotes of the
instruments. Each time any update comes to any instrument the whole vector will be calculated and
then all other functions in the instrument table. Thus the whole table is connected to real time updates
only by the instrument vector. No other explicit real-time update is necessary.

This type of instrument table can of course be used when you want to do a more sophisticated filtering
of the instruments than just using curves and dates.

7.3 The graph window

For many users the graph window is the most popular way to analyse financial data. In order for a
graph to reveal as much information as possible in a limited space a number of special features have
been added to Quantlab's graphing capabilities.

To create a new graph use the menu Insert | Graph or use the Ctrl-G command.

Page 61

7.3.1 An example of a time series graph

In order to list features of the graph component let's go through a simple example first. We want to
plot two time series on the right and left hand y-axis.

First create the expression having three user parameters instrument name, from date and to date:

out series <date>(number) my_series(instrument_name my_instr, date from_date, date

to_date){

 return series (d : from_date, to_date; instrument(my_instr,d). yield ());

}

Since we use parameters in the my_series function, we can re-use this expression for many instances
of the same expression. Compile the expression and drag two instances of the same expression to the
same graph. The graph window should look like this.

Example of graph with two instances of the mySeries expression attached

As we have not yet given the controls any parameter values the graph is still empty. Before we start to
use the graph we will use some of the more common graph formatting features available.

7.3.2 An example of how to merge parameters to common controls

In this example we will always want to have the same from and to date for both instruments, so next
step will be to use the merge control function.

You find the dialog by right clicking on the canvas and choosing "Parameter options" or through the
menu Graph | Parameter options.

On the left part of the dialog we find our functions with their parameters, on the right hand side all the
auto-generated controls are shown. In the top of the right panel there is an empty group for common
controls.

1. Start by choosing the first instance of the my_series function. The available parameters appear

in the left list, if you click on the + sign to the left of the expression symbol S. Here we want to
merge the date parameters from the two functions.

Page 62

2. Grab the from_date parameter and drop it in the right hand list panel on the Common
Parameters group. This creates a new common Date control and removes the corresponding
auto-generated control further below. Give the common control a descriptive name, for
example "From date". In the same fashion, drag the to_date to the right and rename it.

3. In the function list on the left click the + sign to the left of the second instance of the function
mySeries. This function's parameters are now displayed below.

4. Drag-and-drop the second function's fromDate and toDate on the corresponding common
controls on the right.

5. You have now merged the date controls for this graph. If correctly done, it should look
something like in the picture below.

Example of merging date controls together

So how does the graph look like now, having chosen some instruments and dates to display?

Page 63

Example of graph having common date controls

The common date controls now drive both my_series functions. "Today" is the key word used in a date
control to always getting today's date after you save and re-open a workspace. Setting today's date
also implies getting quotes in real time if connected to a real time source.

Tip! You can use the merge functionality in order to give the parameter control a user-defined label
text, other than the function name that is the default. In this case you only merge one parameter to
each control.

bƻǿΣ ǿŜ ǿƻǳƭŘ ƭƛƪŜ ǘƻ ƘŀǾŜ ŀ ƳƻǊŜ ŘŜǎŎǊƛǇǘƛǾŜ ƭŜƎŜƴŘ ǘŜȄǘ ǘƘŀƴ άƳȅψǎŜǊƛŜǎ - мέΦ 5ƻǳōƭŜ-click at the
graph to get the dialogue Attachment Options for Graph. Choose the Legend tab and delete the default
legend text my_series - 1. Then double-click at the my_instr parameter to the right. It appears within
{} signs.

Editing the legend text.

Then do the same with my_series - 2. The effect is that the legend text will be dependant of the choice
of instrument.

Page 64

The graph with edited legend text.

Of course, you can also type a constant string into the same dialogue, or combine strings with
parameters.

Tip! It is possible to merge parameters on a separate canvas/window that will contain all graphs and
ǘŀōƭŜǎΩ ǇŀǊŀƳŜǘŜǊǎ ŀǘǘŀŎƘŜŘ ǘƻ ŀ ǎǇŜŎƛŦƛŎ ǘŀō. This option can be found under View | Show tab
ǇŀǊŀƳŜǘŜǊǎ ƻǊ ōȅ ǇǊŜǎǎƛƴƎ !ƭǘ ҌрΦ CƻǊ ƳƻǊŜ ƻƴ ŎƻƴǘǊƻƭƭƛƴƎ ŀƴ ŜƴǘƛǊŜ ǘŀōΩǎ ǇŀǊŀƳŜǘŜǊ ǎǇŀŎŜ ǎŜŜ ǎŜŎǘƛƻƴ
7.4.5 ŀōƻǳǘ άƳŜǊƎƛƴƎ ǇŀǊŀƳŜǘŜǊ ƛƴ ŀ ǘŀōέΦ

7.3.3 Using the graph mode toolbar

When a graph window is active the graph mode toolbar can be found under menu View | Graph mode
or by pressing Alt + 5.

The buttons guide in which way the mouse interacts with the graph. By default, holding down the left
mouse button over the graph will move the centre left and right.

Zoom in the graph by switching to the magnifying glass and creating an area to zoom in on by holding
down the left mouse button.

Enable and disable zooming functions for the left and right y-axis by depressing the L and R button.

To display a value cursor in the graph, enable the line button |+. This will show y- and x-axis values in
the legend box while you move the value cursor left and right in the graph. You can insert several value

cursors by clicking this button repeatedly. To remove the value cursors, use the button marked with |-

.

To insert a horizontal line use the button with the symbol ½+ and to remove those lines use the button

with the symbol ½-.

When changing any parameters used by the graph or when updates come from the real time feed an
auto-zoom function is available. With the auto-zoom turned on it will refocus the graph on every
update that changes position or size of the displayed graphics. It is possible to turn on the auto-zoom
for each axis separately by pressing down the relevant axis button with double arrows.

Further auto-zoom features admit the user to always show the x-axis at the bottom of the graph rather
than at zero, and always show zero level on the left and right y-axis when re-zooming. (The last three
buttons on the lower row of the control these features.)

Continuing our example from 7.3.1 and using the follƻǿƛƴƎ ŦƻǊƳŀǘǘƛƴƎ ƻǇǘƛƻƴǎ Χ

Page 65

1. Right click on the left axis to get the dialogue Graph properties and choose Multiply by 100 to
the right in the Character pane. Also, choose 2 digits for decimal places and % as symbol. Press
the Home button on the keyboard to get auto-scale.

2. Right click on the left axis to get the dialogue Graph properties and tilt the dates by choosing
a 30 degrees slant.

3. Right click on the background of the graph window and choose Graph properties | Titles. Write
appropriate titles for the graph and the axis. After pressing OK, the titles can be dragged and
dropped at the ends of the axis.

4. Right click on the background of the graph window and choose Graph properties | Holiday and
check that Hide weekends are clicked. Then you can also click at Sweden and Germany (for
this example where we have a Swedish and a German bond) in order to hide all days that are
holidays in any of the two countries.

Χȅƻǳ ǿƛƭƭ ƎŜǘ ŀ ƎǊŀǇƘ ǎƛƳƛƭŀǊ ǘƻ this one:

Note! Any residual holes remaining in the graph, after proper holiday calendar(s) are chosen, are due
to missing data in the historical database. Use your data cleansing tools to repair this missing data. See
manual for the Database tool for help on finding missing data.

7.3.4 Graph formatting options

Right click on data series line (the graph) to:

Change the Order - by selecting a choice in the sub-menu you can change the order for how the graphs
are displayed if you have attached several expressions to the same graph window. The legend text that
corresponds to the last painted graph (in the front) is the last one in the legend text box.

Snap labels ς see special chapter about creating labels (not valid for time series graphs)

Linear regression ς to display a linear regression line for the time series

Page 66

Copy ς copy the underlying data from the selected graph making it available, for example, for an Excel
spreadsheet.

Copy legend ς copy the legend text

Properties ς see table below

Properties detail

 Functionality Description

Legend Automatic
legend
showing
current value
of parameters

In the display name text box free legend text can be written. Any
parameters used in the graph can be attached to the legend by
double clicking on the parameter in parameters list. A parameter
is inserted using {} brackets.

Example: MyGraph showing {myInstr} from date {fromDate} to
{toDate}

Format Graph type Allows for line, column or points.

 Point type Options include plus (+), diamond (Ï), circle (o), square (Ã) filled
or not filled.

 Color, font,
width

For vector of lines, a colour scheme can be set.

Misc Right/left axis Choose to place the graph on the right or left y-axis

Regression Change the colour and width of the regression line

Optimise Will give a smoother appearance when zooming in and out.

Right clicking in the graph space reveals:

Attach/Detach Attach and detach any expression from the graph

Show/hide
curves

 If many curves are attached to one graph it is possible to hide one or
more curves temporarily without detaching them from the graph
window.

Graph properties Holiday To choose which holiday calendars that the graph should handle. If a
market is chosen, the dates set as holidays will not show in the graph.
Multiple choices are valid. Also weekends can be turned on/off.

 Titles To edit the main graph title, the y-axis and x-axis title. Font, size, and
colour can also be set.

 Scale As default, the scaling is automatic and will follow the zooming. It is
also possible to manually set the min and max scaling for each of the
axis and also lock the scale.

 Misc To change the column width when displaying bar chart style.

Changing font, size, and colour of the legend. Formatting the Value
cursor(s) settings.

Page 67

 Axis Change the date format, character display, line format for the chosen
axis. Same dialog will show when double clicking directly on any axis
(see description below).

Parameter
options

 Display the merge function dialog (see separate description)

Minimal frames Will minimize the window frame of the graph (or table).

Rename To rename the current graph

Show/Hide
parameters

 To show and hide the parameter canvas

Duplicate Will create a copy of the whole graph including parameters and
format settings. A reference to the copy will also appear in the
workspace browser.

Right- or double clicking on the right or left y-axis and x-axis:

Text angle Edit the slant of the text

Font, size, and
colour

Change font, size, and colour of the x or y-axis

Line width Change the line thickness of the x or y-axis

Symbol Place a symbol or other text behind the numbers (ex. '5.0 %' or '5 Kr')

Date format Use default setting or format display using an interactive wizard

Tip! By pressing the home button on your keyboard the graph will automatically fit and centre the
graph. This feature can be set on automatic by pressing the buttons in the graph toolbar. Holding down
the shift button and the left mouse button will zoom the graph when the mouse is moved.

7.3.5 Scatter graphs

For graphs where data don't come in the form of a series the point function is useful. This function
returns a point object, which consists of the x- and y-coordinate for a point in a graph. A vector of such
object can be used for producing a scatter graph. For example, to plot a square function on some non-
equidistant x-values you may use the following code:

out vector (point_number) my_scatter_graph (){

 vector (number) x = [0, 0.5 , 1, 2, 5, 10];

 vector (number) y = x^2;

 return point (x, y);

}

Page 68

Result of the scatter graph example above

This function can be attached to a graph window and can then be formatted to show just the points or
with lines in between, as described in 7.3.4.

7.3.6 Plots using matrices or series(vector(number))

It is possible to plot a matrix of numbers or a matrix of points. Quantlab will interpret the matrix as a
collection of column vectors that will be plotted as usual vectors.

Likewise, a series of vector of numbers will be interpreted as a collection of series which each will be
plotted.

In order to distinguish between the columns in the matrix or the different series you can use the start
and end colouring in the Properties dialog of the attached expression.

Similar plots can be created using a series with two range variables, see 3.7.10.

7.3.7 Column graphs

To produce graphs consisting of columns, mark the data series (the graph) and click the right mouse
button. Select Properties and select the tab Format. Here you can select the graph type column and
set the width of the columns.

7.3.8 Bar charts (hi-lo etc)

Often, financial data are displayed in the form of bars showing for example high-low or open-close
prices. This can be done in Quantlab by using the pair object. It is simply a vector of two numbers that,
when used in graphs, it is displayed as a bar starting at the first number and ending at the second. For
instance, the following expressions can be used for creating a bar chart with bid and ask yields.

out number my_yield(instrument_name i_n, date d, quote_side q) =

 instrument(i_n, d, q).yield();

out series <date>(pair) my_high_low(instrument_name i_ n, date from, date to){

 return series (d: from, to;

pair(my_yield(i_n, d, 'bid'), my_yield(i_n, d, 'ask')));

}

If the second function is attached to a graph, it will show a typical bar chart which can be formatted
with the desired bar width etc.

Page 69

In the formatting dialog you can choose between line and column. In the first case the width will be
constant, in the second case it will change when zooming in the graph window.

In order to show the dates on the grid it can be necessary to right click on the background of the graph
and choose Graph Properties | Axis and un-ŎƭƛŎƪ ά²ƘŜƴ ŀǇǇƭƛŎŀōƭŜ ŘƛǎǇƭŀȅ ƛƴǘŜǊǾŀƭέ ƛƴ ǘƘŜ ·-axis format
pane. Also, choose the tab Misc and click On grid.

To construct a chart with several values for each date, for instance open-close and high-low, you can
simply attach several functions using pair objects. Of course, it can also be combined with a normal
graph if the number of values is odd.

Pairs can also be combined with point objects. Then the second value in the point object will be a pair
object.

7.3.9 Creating labels

A common case where the point function is used is when producing various kinds of yield curves. Then
it is useful to show labels telling the names of the bonds. The following is an example of how to produce
a yield curve graph with the instrument names.

out vector (point_date) yield_curve(curve_name c_n, date d){

 curve c = curve(c_n, d);

 vector (date) maturities = c.instruments().maturity();

 vector (number) yields = c.instruments().yield()*100;

 return point(maturities, yields);

}

out vector(label_date) yield_curve_labels(curve_name c_n, date d){

 curve c = curve(c_n, d);

 return label(c.instruments().maturity(), c.instruments().name());

}

First, attach the yield_curve function to a graph window and then the yield_curve_labels function.
Then you get a question which function to associate this labels to. If you choose to attach it to the first
function you will get a yield curve with labels connected to each point.

If the labels cover the graph you can drag and drop them where you want. To get them in the original
position you can select the graph, right-click on the mouse and choose Snap labels.

Attention! In this example the curve is constructed twice for the sake of clarity. If there are frequent
real time updates and many curves it may be necessary to store calculated data in global variables,
see 3.5 and 7.5.2.

Page 70

Example of a Danish yield curve with labels attached to each point.

Tip! If you only want the labels to appear when holding the curser over a point, you can select the
graph, right-click on the mouse and choose Properties. Then go to the format tab and un-click Show in
the Label box. All labels disappear but each label text will be shown in the yellow box that appears
when holding the cursor on a point.

In the example above, the labels where attached to the graph function, another possibility that could
be useful in some cases, for example bar charts, is to attach the labels to the x-axis. For example, given
the following code

out my_graph () = [3, 5, 4]

out my_labels () = [' a' , ' b' , ' c']

you can produce labels on the x-axis by choosing that option when attaching the label function to the
graph. If you want bar charts you select the graph and click the right mouse-button to get the
Properties dialog. There you select Show attachment as Column. Note that in order to associate the
labels to the x-axis, the graph function must consist of only a vector of number rather than a vector of
points.

It might be necessary to zoom in or out in order to view the labels correctly.

A simple bar chart.

Page 71

7.4 Handling parameters

7.4.1 Simple parameter controls

Below follows a list of control choices that can be used for common controls where several parameters
are merged into one control.

Control Used for common instances of: Example of QLang code

String edit String parameters (ex. 'string') MyFunc(string myX)

Number edit Number parameters (ex. 12.4) MyFunc(number myX)

Instrument control Instruments (ex. SGB1044) MyFunc(instrument_name myX)

Curve list Curves (ex. EURGOVT) MyFunc(curve_name myX)

Date control Dates (ex. 2002-02-02) MyFunc(date myX)

Day count list Day count conventions (ex.
ACT/360)

MyFunc(day_count_method myX)

Rate type list Rate type basis (ex. effective) MyFunc(rate_type myX)

Quote side list Quote side choices (ex. Bid) MyFunc(quote_side myX)

Asset swap list Asset swap calc types (ex.
par_value)

MyFunc(asset_swap_type myX)

7.4.2 The instrument control

The instrument control leads to an extensive dialog identical to the one in DatabaseTool. The first
ŜƭŜƳŜƴǘ ƛƴ ǘƘŜ ŘǊƻǇ Řƻǿƴ ƭƛǎǘ ōƻȄ ƛǎ ŀƭǿŀȅǎ ǘƘŜ ŜƴǘǊȅ ά{ŜƭŜŎǘ ƛƴǎǘǊǳƳŜƴǘΧέ ǿƘƛŎƘ ƎƛǾŜǎ ŀŎŎŜǎǎ ǘƻ ǘƘŜ
instrument dialog. In this dialog you have several possibilities for searching the instrument. You can
also view more extended information about a particular instrument by clicking the Info button in the
top right corner.

Tip 1! To find an instrument, write the beginning of the name in the index tab. The search function
immediately goes to the first instrument that matches what you have written. To select the desired
instrument, you can use the up and down arrows, and the press Enter.

All instruments that have been chosen are saved in the drop down list box.

Tip 2! After a while the number of entries in the drop down list box can be quite long. You can decrease
it by pressing the delete button repeatedly, after having chosen an instrument in the list.

7.4.3 The curve control

The curve control resembles the instrument control as it is a list with one special entry ("Select curve
ǘȅǇŜΧϦύ ƎƛǾƛƴƎ ǘƘŜ Ǉƻǎǎƛōƛƭƛǘȅ ǘƻ ƭƛƳƛǘ ǘƘŜ ƴǳƳōŜǊ ƻŦ ŎǳǊǾŜǎ ƛƴ ǘƘŜ ƭƛǎǘΦ 9ŀŎƘ ŎǳǊǾŜ ƛƴ ǘƘŜ ŘŀǘŀōŀǎŜ ƛǎ ƻŦ
a user-defined curve type and in the dialog you can select a curve type that will be used in the list.

Page 72

7.4.4 Creating common controls using Parameters Options

Common controls in graphs and tables can be used for input to several parameters by the use of
merging in the Parameters Option dialog.

The dialog has to list panes, each showing the same information but in two different ways:

To the left there is a tree showing each attachment (instance of function) with its parameters as leaves.

To the right, there is a tree with groups of controls (common controls and auto-generated controls)
with the controls as branches and all parameters associated to the controls as leaves.

See the example in section 7.3.2 where the concept of merging is explained.

In the Parameters dialog it is also possible to set the order of common controls by using the right
mouse button in the list to the right. The group of common controls is always above the attachment
controls, however.

7.4.5 Tab parameters

It is common to organize multiple graphs and tables analysing similar things in the same Tab. Many
times it is convenient to have common controls that guide all graphs and tables within the same tab.
This can be achieved in the specific tab parameter window, which can be moved around and docked
independently. The format of this window is specific to each tab.

To active the tab parameter window use View | Tab parameters, or Alt+5.

At first all parameter controls for every graph and table belonging to the tab will be listed in the
window. It is now possible to merge desired controls into common ones. By right clicking on the tab
parameter window and selecting parameter options, the merge dialog appears. (This is the same
merge functionality available for a single graph or table, as explained in section 7.4.4.)

In an example we wish to merge all curve controls and date controls into two common ones for the
entire tab. Adding two common controls and dragging and dropping the individual function
parameters into the common ones will give a workspace having overriding parameters in a separate
window.

Page 73

Example ς upper left window ς ƻŦ ŎƻƳƳƻƴ ǘŀō ǇŀǊŀƳŜǘŜǊǎ ƻǾŜǊǊƛŘƛƴƎ ŜŀŎƘ ƛƴŘƛǾƛŘǳŀƭ ǿƛƴŘƻǿΩǎ ǇŀǊŀƳŜǘŜǊǎΦ

Using the common tab parameter window it is possible to minimize the unnecessary space used by
ŜŀŎƘ ǿƛƴŘƻǿΩǎ ǇŀǊŀƳŜǘŜǊ ŎŀƴǾŀǎΦ ¢Ƙƛǎ ǿƛƭƭ ŀƭǎƻ ŜƴŀōƭŜ ǘƘŜ ǳǎŜǊ ǘƻ ǳǎŜ ŀ ǎƛƴƎƭŜ Ŏƻƴǘrol to change
settings for all analysis contained in a tab.

In the Parameters dialog it is also possible to set the order of controls and attachments. In the list of
attachments to the left, click the right mouse button on an attachment and select move up or move
down. To change the order of controls within an attachment, select the corresponding parameter and
use the right mouse button. You can also change the order of common controls by using the right
mouse button in the list to the right. The group of common controls is always above the attachment
controls, however.

Note! It is advisable not to show tab parameters and specific parameters for the views at the same
time, as the tab parameters override the specific parameters but not the other way round.

7.4.6 Writing tool tips for parameters

For each control it is possible to write a short help text, a tool tip, that will show up when the cursor is
above the corresponding parameter. Open the Parameters Option dialog and select any parameter
you want to describe, write the tool tip in the text box below, and click OK.

Same example as above but now having the individual windowôs

controls hidden (and the graph label formatted to dynamically show

the chosen data).

Page 74

There are some exceptions to the tooltip possibility described above: Currently tooltips cannot be
written for vector parameters that appear within a table. For some controls, such as a rate type list,
Quantlab has its built-in tooltips that cannot be overridden.

7.4.7 User defined lists (fill functions)

In many cases it is useful to be able to create a user defined list. For example, you could define a list
that gives the user various options for the calculations of a yield curve, or you could put limitations on
how many instruments that should be shown in an instrument list.

We will describe this feature using two examples. In the first example, we will produce a completely
new list. In this case you create a function that takes a string as input parameter which shows up as an
edit box in the user interface. By attaching a function returning a vector of strings to this edit box you
will create a list containing the elements in the vector. Here is the code:

out number calculations(string method){

 number answer;

 if (method == ' bootstrap'){

 // use bootstrap

 // answer = something;

 }

 else if (method == ' tanggaard'){

 // use Tanggaard's model

 // answer = something;

 }

 else {

 // use bootstrap

 // answer = something;

 }

 return answer;

}

out vector (string) method_list() = [' bootstrap' , ' tanggaard'];

Now, proceed as follows:

- First, attach the first function, called calculations, to a table.

- Then drag the second function and drop it on the edit box that corresponds to the method
parameter of the first function, as illustrated by the red arrow below.

Drag the second function and drop it on the edit box as the red arrow indicates.

Having done this, and pressed Recalc, the text box is transformed to a list containing the two entries
given by the vector, see the illustration below.

Page 75

The text box is transformed to a list.

Our second example shows how to construct a list of instruments given a curve name. The first function
calculates the yield of an instrument, given a curve fit.

out number test(instrument_name i_n, date d, curve_name c_n){

 curve c = curve(c_n, d);

 fit_result f_r = bootstrap(c);

 return instrument(i_n, d).yield();

}

The second function gives a list of instrument names. (Note that we have set the quote side to an
empty string, which will enforce the system to not look for a quote in the database or in the real-time
source. We have done this, as we are only interested in the names of the instruments.)

out vector (instrument_name) instrument_list(curve_name c_n, date d){

 return curve(c_n, d, ' ').instruments().name();

}

Now, proceed as follows:

- First, attach the first function, called test, to a table.

- Then drag the second function and drop it on the instrument list that corresponds to the
instrument _name parameter of the first function.

This will make the instrument list control of the first function dependent on the second function, i.e.,
the chosen curve. It may be necessary to use the Parameters option dialogue to put the controls in a
natural order:

The Parameters options dialogue.

Page 76

The table after editing the controls.

Fill functions cannot be removed using the Attach/Detach dialog. Instead, open the Parameters
Options dialog and click the right mouse button on a control that has a fill attachment. A drop-down
menu appears where you can select Remove fill attachment. Note that fill expressions can be attached
both to auto-generated controls and common controls.

See also 8.2 for further examples of using fill attachments.

7.4.8 Out-parameters in attached functions

If an attached function has parameters marked as out the treatment in the user interface corresponds
to the treatment within the code. This means that you can set such a parameter in the function and
the value will appear in the corresponding control in the user interface. This is particularly useful when
initialising controls or when correcting erroneous input values. For example you could have a
instrument table where the user is supposed to input a yield. To get an appropriate starting value you
could use the market yield of the instruments. For example you could write the following code:

logical initiated = false;

out vector (ins trument_name) names(vector (instrument) i) = i.name();

out vector(number) price_calc(out vector (number) yield_v, vector (instrument) i){

 if (!initiated){

 yield_v = i.yield()*100;

 initiated = true;

 }

 return i.set_yield(yield_v/100).clean_price();

}

If you attach these two functions to an instrument table the yields will always be taken from the market
when the workspace is opened but then determined by the user input in the table.

Note that, contrary to standard parameters, the values of out-parameters are not stored in the
workspace when it is closed. The reason for this is that, typically, the purpose of the out-parameters is
that you want to initiate the parameters by taking values from a distinct source, such as the real time
data or the database.

See also 8.6 for further examples using out parameters.

Page 77

7.5 Handling calculation order

7.5.1 General rules for calculation order of attachments

In some cases it is important to understand in which order Quantlab evaluates functions attached to
graphs or tables to properly get correct results. This is especially true when using global variables and
ensuring that they have been updated before proceeding with other calculations dependent on the
global variable.

Ordinary function calls do not have a pre-defined calculation order. However, void functions receive
special treatment in the evaluation engine. All void functions in a tab are evaluated first by the engine.
This is also true for multiple expression windows (i.e. all void functions in all expression windows are
evaluated before any other function is evaluated) in the same tab. However, there is no particular
order among void functions, if several void functions are attached to the same graph, for example.
Therefore, it is often best to use one void function and call the others.

Knowing that the void function evaluates first comes in handy when you need control over any global
variables that need to be pre-processed. When this control should be extended to the user, in graphs
and tables, the void function can simply be attached to the graph or table as any ordinary ΨƻǳǘΩ
function.

An example;

number c; // the global variable availabe to all functions in the expression window

out void f1 () // the óoutô keyword exposes the void function to the interface

{

 c = rng.gauss() ;

}

out number f2 (number b)

{

 return b + c ;

}

out number f3 (number x)

{

 return x + c ;

}

In the example above we assume that all three functions are attached to the same table. This will
ensure that the global variable c always will be refreshed with a new random number before f2 and f3
are evaluated.

When there comes new input data to an attachment that currently is being evaluated (from the user
interface or from the real time source), all this input data will be used in the next call of the function.
This means that there is no queue of function calls of the same function attachment, so each
attachment can only have three states:

- Evaluation completed

- Evaluation in progress

- Waiting for evaluation, due to all new input data.

The two second cases can occur at the same time.

Often it can be useful to do some initialisations before all other calculations, i.e., on opening the
workspace. This can be done using a global variable that is set by a function that does all initialisations:

logical init_all(){

 // Initialization code

 return true;

}

Page 78

logical g_init = init_all;

A special case in the evaluation order is that in an instrument table, the function calculating the
instrument vector has to be evaluated first. This is because it is impossible to do any calculations at all
before the vector is well-defined. See also 7.2.3 and 7.5.3.

7.5.2 Performance optimisation

An important application of the calculation order in combination with global variables is the case
where you have a time-consuming calculation, for example involving time series data, and some faster
calculations, for example involving real-time data, in the same graph or table. In such a case you could
separate your calculations so the time series calculations do not involve any real-time data and put
them in a void function that puts the result in one or several global variables. Then you can use ordinary
functions to display the values of the global variables and combine them with real-time data. This will
reduce the number of recalculations of the time consuming part to only the cases when it is necessary,
i.e., when the user has changed any input variable and not each time there is a real-time update.

Note! In some cases it may be natural to attach a function that, given an instrument name as a
parameter, retrieves data from a global variable. Then it should be noted that this function will not be
updated in real time if it doesn't also create an instrument. The real time engine is only triggered
whenever an instrument (or a curve) is created using today's date.

7.5.3 Calculation order in the instrument table

The Instrument table has a built-in initiation of the vector of instruments prior to the evaluation of
both the void and ordinary functions. Any change in curve, quote side, or date will trigger a re-initiation
of the vector, then evaluate any void functions, and last evaluate all ordinary functions.

This is also true for the case when the instrument vector is defined through a user-defined function as
described in 7.2.3.

7.5.4 Using buttons to trigger calculations

Normally the calculation of an attached function is triggered by a change in a real-time quote or by
pressing the Recalc button (explicitly, or implicitly when pressing Enter after having changed a value in
a control or in a table). It is also possible to letting an attached function be evaluated only when a
button is pressed.

To get a function controlled by a button, first attach the function to a view (a graph or a table), then,
in the workspace browser, right-click on the attachment and choose Add Recalc button. A button
appears for which you can set a caption text.

Whenever this button is pressed the attached function will be evaluated using the latest real-time
quotes. This is the only way that the calculation of this particular attachment will be initiated. Hence,
it will not be automatically updated by changes in the real time source.

Page 79

8 /ŀǎŜ ǎǘǳŘƛŜǎ
The following case studies are aimed to illustrate common financial calculation subjects. Most of the
examples are programmed using the short form for functions, i.e., one-row functions. Each example
corresponds to a workspace file in the folder \Quantlab\examples\workspaces\ .

8.1 Producing a zero coupon curve: zero_curve.qlw

In this example we will take a set of instruments ς a yield curve ς and calculate zero coupon rates using
the bootstrap method. The zero coupon rates are then plotted against time to maturity in order to
produce a zero coupon curve.

Here is a function that solves the problem:

out series <number>(number) zero_curve(curve_name c_n, date tr ade_d){

 fit_result f_r = bootstrap(curve(c_n, trade_d));

 return series (t: 0.1, 10, 0.1; f_r.zero_rate(0, t, RT_EFFECTIVE));

}

In the first line of code of this function, we create a curve using a curve name and a trade date. Then
we apply the bootstrap function which gives us a fit_result object z_c which contains all information
on the zero coupon rates. What Quantlab does when it performs this row, is that it searches in the
database for a curve with the curve name stored in the parameter c_n for the date trade_d. It then
collects all static data for the instruments on the curve on the specified trade date and performs a zero
coupon calculation using the bootstrap method.

In order to plot a graph, we have to produce a series of zero coupon rates. Here we take a maturity
range from 0.1 years to 10 years with a step size of 0.1, and calculate the zero coupon rate for each
maturity using the method zero_rate of the fit_result object.

We have chosen to plot the effective zero coupon rate. The zero coupon rate starts at the trade date
and matures at t years later. As there is no forward start the first argument of zero_rate is set to 0.

The function can be attached to a graph. Although there are no common parameters, you can rename
the parameters by clicking the right mouse button, choosing parameters options and then create two
controls; one for the trade date, one for the curve name. For more information about merging
parameters, see 7.3.2.

Depending on what curves are defined in your database, you can choose a curve and get a zero coupon
curve based on that collection of instruments.

Page 80

Correctly applying the example should give a workspace with yield curve and date controls.

Page 81

8.2 Zero coupon curve with blending and choice of methods:
zero_curve2.qlw

The previous case can easily be extended with the option to choose the zero coupon method. Let's say
you will give the end-user the possibility to choose between the bootstrap, Nelson-Siegel, and
Maximum Smoothness methods. Then the zero coupon function in the previous case can be extended
like this:

out series <number>(number) zero_curve(curve_name c_n1, curve_name c_n2, date

trade_d, string method, quote_side qs){

 curve c = blend_curves_depo_swap(curve(c_n1, trade_d, qs), curve(c_n2,

trade_d, qs));

 fit_result f_r;

 if (method=='Bootstrap')

 f_r = bootstrap(c);

 else if (method =='Nelson - Siegel')

 f_r = fit(c, ns(), WS_PVBP, 2);

 else if (method == 'Max Smoothness')

 f_r = max_smooth(c, SMOOTH_C2);

 else

 throw(E_INVALID_ARG, 'Unknown zero coupon method');

 return series (t: 0.1, 10, 0.1; f_r.zero_rate(0, t, RT_EFFECTIVE));

}

We have also taken the opportunity to extend the curve creation with a blending function: This
function will take a curve with short maturities and a curve with long maturities and merge them. If
there are overlapping instruments, they will be removed from the short curve. For other blending
options, see the Function browser. The parameter qs gives the possibility to choose among pre-defined
quote sides (bid, ask or mid).

Instead of letting the user manually type the strings for the zero coupon methods we can create a list
from which it is possible to make a selection:

out vector (string) methods() = ['Bootstrap', 'Nelson - Siegel', 'Max Smoothness'];

This vector function can then be attached to the string control in the user interface that corresponds
to the parameter method .

The Maximum smoothness method applied to a blending of two curves.

Page 82

8.3 A zero coupon studio: zero_studio.qlw

This example is a more elaborate version of the preceding zero coupon workspaces. We will not go
through the code row by row but give some general comments.

The most important calculation is done in the void function calc_zero which sets the global fit_result
variable g_f_r to the result of a zero coupon estimation of the chosen type. Then there are a number
of functions that use the global variable to produce the zero coupon curve, the forward curve or zero
coupon implied yields for the bonds. As the void function is evaluated first, all other functions will
always use the global variable when it is updated with the most recent real time quotes and user input.

However, if a function only presents data that is based on a global variable, it will not be triggered by
real time updates, therefore the first row of these functions creates a curve of the relevant
instruments. If today's date is chosen this will make these functions triggered by real time updates in
any of the instruments on the curve.

In the user interface, we have merged parameters for all functions in the tab parameter pane. For the
zero coupon models and the weighting methods we have used fill-attachments on the merged
controls.

Page 83

8.4 Pricing a bond relative to a benchmark curve: bond_pricing.qlw

Often fixed-income instruments are priced relative to a benchmark. Either this can be a single
instrument where you simply calculate the yield spread between the two instruments, or a whole
curve. In the latter case you have to calculate the corresponding zero coupon benchmark curve and
then price all cash-flows of the selected instruments using the zero coupon rates. This gives a fair value
of the bond, if it were an instrument on the benchmark curve. The spread between the corresponding
zero-curve implied yield and the market yield is therefore an accurate measure of the spread to the
benchmark curve.

In this example we will produce a graph of the daily spread between a bond and a benchmark curve
during a chosen time period.

As in example 8.1, we must first create a curve using a curve name and a trade date. Then we apply
the bootstrap function which gives us a fit_result object which contains all information on the zero
coupon rates:

fit_result zero_rate_structure(curve_name c_n, date trade_d)

{

 return bootstrap(curve(c_n, trade _d));

}

When this function is calculated, Quantlab searches in the database for a curve with the curve name
stored in the parameter c_n for the date trade_d. It then collects all static data for the instruments on
the curve on the specified trade date and performs a zero coupon calculation using the bootstrap
method.

Now, we want to calculate the spread between the bond and the benchmark. The following line of
code solves that problem:

return i.yield() - i.yield(zero_rate_structure(c_n, trade_d));

The function first retrieves the market yield of the bond and then subtracts the yield implied from the
zero coupon function. Note that this yield is calculated from the sum of the present values of all cash-
flows of the bond, valued using the zero coupon curve.

Finally, we want to plot this spread for each day during a chosen time period:

out series <date>(number) spread_series(curve_name c_n, instrument_name i_n, date

from_d, date to_d)

{

 return series (d : from_d, to_d ; yield_spread(c_n, instrument(i_n, d), d)) ;

}

Here, we construct a series from the date from_d to the date to_d and call our spread function for
each day in the date range.

On each day in the date range the following steps are performed:

¶ Retrieve the instrument data from the database.

¶ Retrieve the curve data from the database (what instruments are on the curve on that specific
date).

¶ Retrieve the instrument data for each instrument on the curve.

¶ Retrieve market prices for all instruments above.

¶ Calculate a zero coupon curve (a fit_result).

¶ Calculate the present value of all cash-flows of the bond.

Page 84

¶ Convert the present value to an equivalent zero-implied yield, using the calculation method of
the bond.

¶ Calculate the spread between the market yield and the zero-implied yield.

The example ς showing a Swedish mortgage bond spread to the SEKGOVT curve.

