Algorithmica
Research AB

Quantlab 3.11

LASNDA YI Yy

Last update2018-05-03
© 2012-2020 Algorithmica Research AB. All rights reserved.



Algorithmica Research AB reserves the right to mi
changes to the information contained herein withot
prior notice.

No part of this document may be reproduced, copie
published, transmitted, or solih any form or by any
means without the expressed written permission
Algorithmica Research AB.

Quantlab® and Algorithmica are trademarks or registe
trademarks of Algorithmica Research AB in Sweden
other countries. Other product or company nam
mentioned herein may be the trademarks of the
respective owners.

Page?



1 L (o Yo [WTox A0 o FA TR 7

11 What is the Quantlab SYSIEM2.........oooiiiiiii e 7
1.2 Quantlab onrline fuNCLION DrOWSE...........uiiii i 8
1.3 Contents Of thiS dOCUMENL...........ciiiiiiiiii e 8
2 Development ENVIFONMBL ..........coooiiiiiii e e rr e e e e e e e e e e e e e e eaeas 9
2.1 Starting and quitting QuaNntlab...............oooiiiii i 9
2.1.1 Starting QUANTIAD.............ooooi i a e 9
2.1.2 QUIttiNG QUANTIAD..........ccco i aaa e 9
2.2 QUANLIAD WOTKSPACE. ... . et e et e e e e e e e e ert e e eaaans 10
2.3 AT g ] o= Lo = (o 1o SRR 11
2.3.1 WOIKSPACE DIOWSEN.....ciiiiiiiiiiieiie e e e e e e e e ee e e 11

W T = (o] (=111 0] T =T L1 (o ] S 11
2.3.3  FUNCHON DIOWSEL.....ciiiiiiiieiitie ettt e e e s 13
2.3.4 Real time QUOLES DIOWSEI.......cvviiiiiiiiiiiiee e 14
2.3.5 Messageswarnings and COMPIIEr EITOLS..........cciiiiiiiiiiiiieee e 15
2.3.6  PrOQreSS lIS6. ..ttt e e 15
2.4 Setting pPreferences (TOOIS)......oii i 16
2.4.1 Database OPLiONS.........uuuiiiiiiiiiiiiiiee e 16
2.4.2 INTAD GENEIAL.....ci it 16
2.4.3 INTAD EXIENUEA:.......oiiiiiiiiiei e 17
2.4.4  INTAD MESSAUES:.....cci ittt ettt e e e e e e e e 17
245  INTAD TaDIEL ... 17
2.4.6 Intab Edit (for the expression ditOr):.......ccccciiiiiuiiiiiiiiiiiieere e e e e e e e 17

3 Programming in Quantlab using QLang............coovviiiiiiii i 18
3.1 INEFOTUCTION ...ttt e e e e e e e e e 18
3.2 A SIMPIE BXAMPIE ... 18
3.3 [0S Y0 ] (o I 1 P 19
3.4 FUNCHIONS. .. e e e e e e e e as 21
3.4.1 Standard function definition.............ccooiiiiiiiiiee e 21
3.4.2 Compact function definition................eueeeieiiiiiiiii e 22
3.4.3  INStaNCES Of FUNCHIONS ......eeiiiiiiiiiei e 22

3. 4.4 FUNCHON PAramMEEIS. .. ..ooiiiiiieieieii ettt et e e et e e e e eeeeaaaaaaaaaeeaaaaaaaaasaaaaaaaaaaanns 22
3.4.5  Calling FUNCHONS ...ceeiiiiiiiiiiie ettt e e e e rre e e e e e anes 23

G T U o Tod T I oL ] (= = T 24
3.5 Local and global variables...............cccooiiiiiiiici 25



3.6 (O 01T = 0] = PP SRRPPPPPPT 25

3.7 T2 1t B 01T PP 26
A N = T T (ol 1 o1 ST PP P PSP PPPRPPPPO 26
3.7.2 Object types and member fUNCHONS.........couuiiiiiiiiie e 27
3.7.3 CreatnNg NEW CIASSES.......ccoiiiiiee et e e e e e e e aaaaaaas 27
3.7.4 Example of classes and Operatars...............oooeei e eeciccccc e 31
TR S T Y/ o =T 0 =0 3SR 32
3.7.6  DefiNitioN Of tYPES...ccci i aa e 32
TR A A =1 010 [ 1Y/ 0TSSP 32
3.7.8 Declaring YoUr OWN €NUM TYPES.....coooiiiiie e re e e e e e re e e e e e eeaeaaaaaeaaas 33
3.7.9  VECtOrS @nd MALICES. .....cciuviiiiiiiiieeiiiiee ettt e e e e 33
.7 10 SIS ittt 35

3.8 FIOW CONEIOL....ceiiiiite ettt e e amr e e e e 38
3.8.1 I, €1S€, dO AN WHILEL..... ettt et e et e e e e e e e e eraaeeees 38
S I 1 [= 8 (o] g [0 To ] o H OO P PP PP PPPPPPPPPPN 38
3.8.3  The SWItCh STAtEMENT........eiiiiiiiiiiei e e e 39
3.8.4 Error handling: Try and CatChl.............occviiiiiiiiiiiiiiiieeeeeiiecee e A0

3.9 1070] 1110 1T 01 TSRS PP 41

3. 10 DEDUGGING. .ot 42
3.10.1  IMMEIALE WINAOW......ceeieiiiiiiiiiee et e e e s e a e e e e nernes 42
WItING IDrary files ... 43

4.1 Creating lbrary fUNCHONS. ..........uiiiiiii e 43

4.2 Writing overloaded fUNCHIONS..........oooiiiiiiiiii e 43

4.3 Adding member functions to object Classes.........cccoovvviiiiiiiiie e 43
4.3.1 Adding a valuation method to an INStIUMENL............ccccciiiiiiiiiiiiriieeere e 43
4.3.2 Adding a quote field method to an instrument...................o oo 44

4.4 Writing help text for library funNCioNS..........ooooe e 44
UsIiNg the COM INLEITACE .......oieeieeie et 46
Using the InterQuantlab Communication ServefQC...........ccoie i 47

6.1 Stepby-step installation of the IQC on the server.........ccccccoiviiiiie 47

6.2 Creating a connection to the 1QC server from the Quantlab client.......................... 48

6.3 Example of creating a chat room using 1QC.........ooviiiiiiiiii e 49

6.4 Example of feeding some mark&haker Corp Spreads..........c.oovevvvveeevieiiiceeeeinnnnnnnnn 51
Output - tables and graphiCs. ... 54

7.1 General PUrPOSE tADIE........ue e 54
7.1.1 Attaching an expression t0 @ table............uuuuieiiiiiiiiiiiiiiiie e 54

Page4



7.1.2 Table options and fOrmMatting.............ooeieiiiiiiiii e e e e e 56
7.1.3 Vector parameters in general tables.............cciiiiii i 57
7.1.4 Automatic text FOrmMatting..........c.uvreriieiiie e 57
7.2 The INStrUMENT BDIE. ........eii e 57
7.2.1 A standard instrument table...............oociiiiiiiii s 58
7.2.2 Formatting the instrument table............c.cccoe 59
7.2.3 Creatingnstrument tables using an instrument vector functian.................c.cc..ue.. 60
7.3 The graph WINAOWL........cooiiiiei e e e e 60
7.3.1 An example of atime Series graphl........cccovvveiiiiiiieiieieee e 61
7.3.2 An example of how to merge parameters to common controls.......................... 61
7.3.3 Using the graph mode toolbar.............oooo e 64
7.3.4 Graph formatting OPtiONS........uuuiiiiiiiiiiiieeecer e 65
7.3.5  SCAEr Graphs......cci oo e e e e e e e e e e e e e e e e e 67
7.3.6 Plots using matrices or series(vector(NUMbDEL))...........uuiiiiiiiiiieeiieeeeeeeee e eeeeeeeeenn, 68
7.3.7  COlUMN QraPRS...ccco oo e 68
7.3.8 Bar Charts (RI0 €1C).....cciiiiiiiiiiiii e 68
7.3.9 Creating labelS.........ooiieiieee e 69
7.4 HanNdliNg ParameterS.......cooi i 71
7.4.1 Simple parameter CONIOIS ... ...uii i 71
7.4.2 The iNSrUMENT CONIOL.........uiiiiiiiiiiii e e e e 71
A G T N = ol U V7= oo o ) SRR 71
7.4.4 Creating common controls using Parameters OptiONS............oocvvveeeeerniniiieneeeenn 72
745 Tab ParameterS.......c.cuviiiiiiiiiiieee e nnnnnee e d 2
7.4.6 Writing tool tips fOr PAramMELELS..........uuuuiiiiiiiiiiiieiieree et e e 73
7.4.7 User defined lists (fill FUNCLONS)...........uuuiiiiiiiiiiiiiiiiiieee e 74
7.4.8 Outparameters in attached fUNCLIONS...........ccccciiiiiiiiiiieeeeee e, 76
7.5 Handling calculation Order............oouuiuiiii e 77
7.5.1 General rules for calculation order of attachments..............cccooiiii s 7
7.5.2 Performance OptiMiSAtiON...........coviiiiiiiiiiiiieee e 78
7.5.3 Calculation ader in the instrument table............cccooiiiiiiie e 78
7.5.4 Using buttons to trigger calculations..............ccceeveiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee . A8
CASE STUAIES ...ttt ettt e e oot oot oo e oo et emr ettt 79
8.1 Producing a zero coupon Curve: Zero_CUMVe.QIM..........uuuiieeeeerieiimre e eee e 79
8.2 Zero coupon curve with blending and choice of methods: zero_curve2.glw........... 81
8.3 A zero coupon studio: Zero_ StUdIO.gIW..........vveeeiiieeiie e 82
8.4 Pricing a bond relative to a benchmark curve: bond_prico@ ..............ccooevvvvvnnnnnnn. 83

Pageb



8.5 An instrument table with spreads to a benchmark curve: bench_spreads.glw........ 85

8.6 Extending spread calculations with user input: bench_spreads2.glw...................... 86
8.7 Calculating covariances: CONaNCe_MAatriX.qIW...........uuuummmmrmiiiiiiiiiimre e 87
8.8 Creating a simple portfolio Valuat-Risk function: Portfolio_VaR.glw....................... 88
8.9 Calculating tail rates: tail.gI........ccooieeiiiiie e 89
8.10 Has the market been wrong or right?: expectations.glw..............ceeeeiieeeiciceeene e, 90
8.11 Creating an intraday chart: intraday_graph.qiW..............ccoooviiiiiiiiiciiiie e, 92
8.12 Using function pointers and classes: fp_teSt.QW.........cooevvrviiiiii i 94
8.13 A condensed market page: market_page.qIW...........ooeuvviiiiiieiieiiiin e, 95

Page6



1 LYGNRRdAzOUOA2Y

1.1 What is the Quantlab system?

Production and distribution of financial analysis in a broad sen§guantlab is a comprehensive
software environment where financial analystsdatnaders can build, simulate and visualize different
analyses and trading scenarios. Complex calculations involving real time data a multitude setiiese

data are quickly performed using the btiitt expression language and the powerful réale
evaliation engine. The resulting data may be presented in a view, such as a graph or a table, and can
also be exported into an external application (e.g. Microsoft Excel) using a COM interface.

Developer and User EditiorQuantlab is available in two versiorss,Developer edition and a User
edition. The Developer edition is the more complex application, which the analyst uses for constructing
trading strategies and other types of analysis. Traders, sales staff and brokers use the Quantlab User
edition to reviewand examine the analysis available within a workspace. They may for example change
the financial yield curves or instruments involved in the analysis or choose to look at a specific historical
time segment of interest.

Powerful expression languagd.he builtin expression language is highly versatile, and theeset

is free to extend it using the innovative library functionality. The syntax resembles C++ with the
addition of highlevel treatment of vectors and matrices: There is the possibilitgXpress normal
algebraic expressions using vectors and matrices and you can expand scalar functions over vectors and
matrices. A powerful visual expression editor aids in the creation of complex expressions and instant
help is available for all functiored objects. Expressions are easily attached to different views using
the workspace manager, and a view may contain an unlimited amount of expressions. For the
advanced user there is a C++ API available, exposing the full capability of Quantlab, thog ereat

truly open and extensible environment.

Realtime calculations.Connected to one of the supported rei@he feeds, Quantlab is able to display
and manipulate expressions involving riiade term structures as well as historical tirseries data.
The ealuation engine efficiently handles the-calculation.

Historical data.An important purpose of Quantlab is to facilitate the analysis of tsmees data, for
example the development of the TSIR over time. Any expressions created may thus easilydiecval
over a certain time period, with the evaluation engine automatically taking care of multiple sets of
holidays, instruments going on and off the curves involved, differenttiea links used for the same
instrument over time, to mention but a few tifie complexities that Quantlab automatically handles.

SQL Databasd he evaluation engine is connected to an industry standard SQL database, where the
necessary instrument and curve definitions resides, along with available time series data. The data may
come from an external source or may be automatically collected from gimalfeed such as Reuter
Triarch by using the Algorithmica History Server. More details on this solution, and the History Server
in particular, are available upon request.

External API. Quantlab comes with a C++ API, exposing the full capability of the application, and
presenting the C++ programmer with an abundant financial class environment to build upon. Any
imaginable additional functionality may thus be added by the inclusi@me or several external plug

in modules. Third party libraries are also expected to be available for a wide range of financial
calculations.

COM library.The Quantlab function library is available through a COM interface in Visual Basic. This
means thathe advanced user can build own applications involving Visual Basic, MS Excel with help of
the Quantlab financial calculations and database communication. Moreover, all functions available in
Quantlab are also possible to export to the COM interface, dctpyour own QLang library files and
C++dll:s.

Page7



1.2 Quantlab online function browser

Quantlab has an extensive function help browser that describes all functions, object types and
keywords, together with numerous code examples. The function browser carubd fider View |
Function browser or by pressing Alt 1. By default, the Function browser connects to Algorithmica
wS a S| Nidekn@lp Ibrgry. This ensures that you always use the latest help documentation. By
right-clicking on the Function browser youay select to use the local copy of the browser instead.

1.3 Contents of this document

The pdf help document is organized into five main chapters.

15t chapterc Introduction

2"d chapter¢ Guides through the workspace environment

3 chapter¢ Talks about the programming basics of Quantlab

4" chapter¢ Describes how to build the user interface with graphs and tables

5 chapter¢ Presents a collection of case studies for typical uses of Quantlab

Pages



2 5SSt 2LIYSY( SYOANRYYSyl

The development envonment is designed with the specific requirements of the financial analyst in
mind. Traditionally the quantitative analyst has used a combination of development tools including
mathematical software packages, spreadsheets, C++ or Visual Basic to comgelaterk. Quantlab
integrates a high level programming language with the possibility to adddesared functions or
classes from C++ or any COM compliant programming language. Quantlab handles all database
interaction and real time connections.

2.1 Starting and quitting Quantlab

2.1.1 Starting Quantlab

Start Quantlab by doublelicking on the Quantlab icon on your desktop. An empty workspace is
automatically opened. To open an existing workspace file use File|Open. There are example
workspaces in the folder Algoritica ReseardiQuantlab ExamplesWorkspaces.

Valid licenselQuantlab requires a valid license in order to work. The license is connected either to the
computer on which the software initially was installed on or to the user who initially signed for the
product. Please contact your IT department to check which type of license you have.

2.1.2 Quitting Quantlab
You quit your Quantlab session by clicking on File | Exit in the main menu.

Paged



2.2 Quantlab workspace

The Quantlab system has two faces, a developer enviesnrand a user environment. The developer
version workspace is designed for easy programming and testing. Here you find the workspace browser
and function library.

i A minple oxsaple of a Terc coupon CurTe
Lz osve
= | ] Tero pwap curves % Calculate a bootstrapped curve (returns & [it_resalt)
T (Hy_bootetrapicurve_nons bonch, date trede_d) = bootstrapl
e
ilr.rm % Calculate zerc rate for & given date
- Ao _F(curee_cans ¢, date d. cuaber 1enory) =
ﬂi:i:.;‘ |My_bootstrapic, di. zero rate{l, tenor. ‘stfsctive’ }=lld
;0 vl
w-ﬂw % Caloculate zero coupon yield curve, 0§ to 10 years
Tt lout 3_curvel{curve_nane ¢. date d) = i
series)] tenoy Eal {1, 14, 1), zaro_r{c, d, temc
i ﬁ Em""“ rege t, o =
F mdeg % Caleulate
g e R [ = @ DEGOVT-REUTERS
o et " mices a3 | e seGOvT
L —

i | Ve | T | Cwicrigtan, - | v | '_’E I
I . GRS LB Bnstnament (130 g‘ﬂ
s ————

| CAMOLMO 1R Brwtnamend “SEN (13000

Tera urves. L |
| CALAZ 11 Istrument SEX (10, e
| COMUNZ 18440 Instrment SEI (1300},
| -

Workspace showing the main features of the developer edition

Windows within the workspacean be moved around freely. Windows with double bars on one edge
dock to the side you move it to. To wock a window simply double click on the window side with
double bars. If you do not want the window to dock, move it having the Ctrl button presseal do

PagelO



2.3 Workspace tools

2.3.1 Workspace browser

In the workspace browser you can organize your expressions, tables, and graphs into folders and tabs.
On opening Quantlab an empty workspace will be created.

Workspace i |

[E-{E] Forward rates

E Frod_curve

o I Fred_seties

E frod_series_spread
e Fiwd_spread_curve
[—]-- Reeal time

=I-[#] Forward Graphs

o Fd_curve
ople Pwd_curve

----- mb (wd_spread_curve
[—]-- Time series

- [#] Issuer spread

- [=] Term spread

A workspace example

By right clicking with the mouse ohd workspace icon you can insert folders to organize your project.
To visually organize your tables and graphs in the workspace, you can insert tabs using Insert | Tab on
the menu. Graphics and tables can then be draggedidropped under a relevant tab.

Rename a folder, tab, expression, graph or table by right clicking on the object you want to edit. Right
clicking also displays the most common properties of each object.

You can change the order among tabs by dragging and dropping: Use the left molssetbwirag a
tab to the workspace symbol in the top of the workspace browser. This will put the selected tab last in
the list.

2.3.2 Expression editor

In the expression editor you write the code to be executed and viewed in tables or graphs. Code written
in the editor is saved in plain text so you can import and export this code to any text editor. To get help
on using the builin functions please see the Function browser.

Pagell



Expression * : . z: Y et

< Emample code with color decoration

out number myFunc{numnber =)

1

[1.3, 2.2, 1.271:
['Hello', |'Goodbye]
[#2003-12-24, #20]

vector (nunber ) myH
] vectoristring) nys
[} vector{date) nyD

return =

Sample code in the Expression editor (with syntax errors highlighted)

Coding help is aflable as coloucoded text, parenthesis checks, function parameter lookups, and
object member lists.

Default colour codes:

Colour code Type of code
Green Comments

Blue Key words in QLan
Beige String

Unfinished string

Greenblue Date

Fluorescent greer] Unfinished date

Violet Number

User defined settings for the expression window can be found in the top menu Tools|Options|Edit
where also background colour and indentation can be changed.

Useful tooHip! To assist in entering builh or user functions, a tool tip will be displayed when you
enter the first left hand parenthesis of the function. All objects will show its member list when entering
the dot after the name.

Pagel?2



2.3.3 Function browser

An important pat of the help that comes with Quantlab is the function browser. All types, functions,
objects, and members are displayed. If you write library files or program your own C++ functions using
the Quantlab API, these functions will also show up in the fundifowser.

Function browser 5

Back H Print -
o eme - on 2) QLang reference I
Cantents l Index ] Search] - i
instrument
BB Cp!—'!nk 0 Creates an instrument object, with the specified trade date and vield, from the provided
""" & cpllink instrument definition.
[ & curve
""" & curve e instrument instrument (instr def instr def, date trade date, number
B & curve_name quote)
m | & frn_cash_flow_dates
- @ instr_class_name
@ instr_def Parameters
----- & inztr_def instr_def
[ @ inztrument The instrument definition from which the instrument is created.
""" @ - trade_date
[+ & instrument_name The trade date for which the instrument is created.
..... & merge “ = quots
H-@ quote_s? e The quote that all calculations on the instrument are based on. The quote style
B[] Curve blending (price or yield) is defined via the instrument definition object, in the database. Le.,
-] Database Functions the form of the quotation is the same that would be recieved from the real time
-2 Date Maripulation link for an instrument of this instrument class.
-] Debugging
&[] Ermor Handling Return value
- F!Ie functllons An instrument ohject.
-] File Functions
=[] GARCH A
&[] Harizon Functions
B[] Interpalation
-2 Inter-Huantlab Communication
[ Laocal Realtime
B[] Map and Set
-1 Map functians
-] Mathematical Functions
B[] Matrix Caloulation
(23] Monfinear Optimization
-] GL Batch Server i
— —

The Function browser

Top left hand window will list all objects and folders of functions available. The top middle window will
RAaLX e Iff FT@FLAfFIofS FdzyOQlAzyad ¢KS (2L NARIAKI
including thetype and name of the parameters.

Help for each function is displayed in the bottom window. The help window is by default read directly

from Algorithmica Research' web servers. A locally stored help can be accessed-blyckaid in any
topwindowand@-d St SOGAyYy 3 a2yt AyS KSfLX Ay (KS YSydzo

Speed tip!Right clicking on a function and pressing insert will copy the function and its parameters
inserted into the expression editor.

Pagel3



2.3.4 Real time Quotes browser

When viewing any graph or table that includeslay's date, the real time browser will display real
time data. By default, today's date is used whenever you want to view real time data.

Only instruments relevant to thactivegraph or table will be displayed in the real time browser. In
order to viewreal time quotes for another graph or table, simply click on it to make it the active
window.

The order of the columns can be changed and switched on/off by-cigtking in the window and
aStSOGAY3a a02ftdzYy LINPLISNIASaE D

Realtime quotes k|

[T Stop update |Eur|:||:|e gpreads to DEGowt

| Instrument | Ric | Tirne | Bz, | Bid | :l
DE113520 DE113520= 152932 +104.980  +104.870
DE113521 DE1135241= 15:23:30  +101.180  +101.140
DE113522 DE113522= 192932 +95.380 +95.:200
DE113523 DE113523= 192932 +95.0680  +95.020
DE113699 DE113693= 152911 +100.800  +100.740
DET13700 DE113700= 152310 +100.660  +100.600
DE113701 DE11370= 152926 +100.028  +99.938
DE113702 DE113702= 132925 +937130 +933.030
DE113703 DE113703= 01:00:00 +93.640  +39.600

DE11413E DE114136= 15:28:36
DE114138 DE114138= 01:00:00

CE114140 DE114140= 152826 02750 +103.740
DET14141 DE114141= 152304 4102730 +102720
DE114142 DE114142= 152851 +97.730 +97.720
DE114143 DE114143= 152323 +93.230 +399.280

DK03315813 DKO331813=  01:00:00  +125.040 4124900
DK.0391364 DK0331864=  01:00:00  +110730 4110730 oo
Dr.0351302 DKO331302= 152332 +112400 4112330
Dk.0391953 DKO331953= 01:00:00  +110320  +110.230
Ck.0391936 DKO331936=  01:00:00  +110930  +110.840
Dr0332062 Dk0992062= 1522332 +101.480 +101.430
DK0332070 Dk0392070= 152332 +100.820  +100.740
Dk.0332089 Dk0332083=  01:00:00  +103.220  +103.120
DK.0332100 Dk0392100= 152847 +101.9310  +101.330

ELIRTOMD EUR10MD= 0:00:00  +2.36 +2.26
ELRTTMD EURT1IMD= 152738 +239 +2.32
ELURTMD EURTMD= 0:00:00  +2.09 +2.03
EURTYD EURTYD= 15:23:48  +245 +2.35
EURZMD EURZMD= 152249 +216 +2.08
EURZD EURZ2 D= 0:0000  +2.11 +2.06
EURZYD EURZD= 01:00:00  +3.01 +2.06

S e e e e A

FIIR3MN FIIR3mMN= 1 -00-nn +7 1R +2 10 ;I
Fezet | E

Example of the real time browseith instruments and quotes

The real time browser enables the user to temporarily override the real time quote with own quotes.
By double clicking on any quote field, the user can enter own values. Blue fields indicate that the quote
is user defined. Tactivate the user quotes, click on the check box in the first column.

Pagel4



Update in the bottom right to will send your overridden quotes to the workspace graphs and tables.
¢2 NBaSi dzaSNI ljdz2dSa ol O1 G2 GKS tlFad @rtAR NBIL§

Seed tip! When entering your own quotes you usually want to change the market quote by some
small increment. Use the keys for fast action.

Change in the last figure Use arrow up / arrow down
Change a basis point Use Ctrl + arrow up / arrow down
Changea tenth of a percentagé&Jse page up / page down

Change a whole figure Use Ctrl + page up / page down

2.3.5 Messages warnings and compiler errors

There are two phases to programming and testing financial expressions in Quantlab. First the written
expressionmust be syntactically correct. This is taken care of within the expression editor and
compiler. Secondly the financial expression must make sense when used on real world data.

General settings for when and why the messages should display can be fouradisih @ptions |
Messages. Read further undea.4

When compiling and debugging an expression window any compiler messages will show in the View |
Messages comfar tab, and in rurtime warnings will can be found under View | Messages warnings
tab.

i | Function | Wit | Time | Description e
% vield_dev_Swp_se... Spread to EURswap 2003-11-25 - 16:27: 14 Unknown instrument 'SGE1044'
& vield_dev_Swp_se... Spread to EURswap 2003-11-25 - 16:27:14 Unknown instrument 'SGE1044'
& vield_dev_Swp_se... Spread to EURswap 2003-11-25 - 16:27:14 Unknown instrument 'SGE1044'
F_!‘, Yield_dev_Swp_se... Spread to EURswap 2003-11-25 - 16:27: 14 This function cannot be displaved in the graph
& vield_dev_Gwt_se... Spread to DEMgovk 2003-11-25 - 16:27:14 Instrument 'EUROND' {65179) has no quate For 2003-11-11
& vield_dev_Gwt_se... Spread ko DEMgovk 2003-11-25 - 16:27:20 Instrument 'EUROND' (179} has no quoke For 2003-11-11
& vield_dev_Gwt_se... Spread to DEMgovt 2003-11-25 - 1627121 Instrument 'EUROMND' (61790 has no quote for 2003-11-11
& vield_dev_Gwt_se... Spread to DEMgovk 2003-11-25 - 16:27:22 Instrument 'EUROND' {65179) has no quate For 2003-11-11
& vield_dev_Gvt_se... Spread ko DEMgovk 2003-11-25 - 16:27:23 Instrument 'EUROMND' {179} has no quote For 2003-11-11 =
‘warnings I CUI‘“D”BTI

Example of warnings in the run time environment

Typical warnings occur when:
- historical data is missing in the database
- calculations fail due to missing data
- requiredstatic data is missing for any instrument

By right clicking on the warnings, copy and delete functions appear.

2.3.6 Progress list

Workspaces can eventually contain hundreds of expression that will be evaluated each time any
parameters or quotes change. Tpheogress list will display which expressions that currently are being
re-calculated.

Pagel5



Funckion | View | Progress
Fard_curve  Forvear, . |

Fwd_curve  Forwar... [ ]
frad_spr... Faorwar... [ ]
Fwd_seri... Issuer .., [ ]

Example of the progress list

For each graph or table a star (*) in the window header is shown as long as there is at least one
attachment that is still calculating.

To manually stop the execution of an expression, right click on the expression attached to a specific
graph or table in the workspace browser and press Stop. The evaluation cannot be stopped in the
progress window.

Speed tip!lf the computer starts tolsw down due to extensive realculations, you can manually set
a re-calculation frequency. Under the Tools | Options menu, the real tiragateulation frequency can
be set to a higher number. For example, entering 10 seconds will drastically reducadhe |

2.4 Setting preferences (Tools)

Under the Tools Option menu, you will find some useful possibilities to set preferences for the general
appearance of Quantlab, for the expression window and for paths when loading various library files.

2.4.1 Database options

The name of the ODBC data source that is used for retrieving all instrument and time series data. You
can change the ODBC source and then press Reload in order to switch the database. This is equivalent
to closing down Quantlab and-@pen it with the curent workspace.

2.4.2 In tab General:
- Option to show a dialogvhen attaching functions to graphs or tables
- Option to show a name dialogrhen creating a view (table or graph)

- Option to calculate visible views onlyNormally, this should be checked as it speeds up
performance. If all views must be calculated at each relevant real time update, it should be
unchecked.

- Number of files in the recently used fildst and the maximum number of characters used for
the nameand the paths in the menu.

- Default quote side When constructing an instrument or a curve you have several possibilities
to set the quote side. However, often the quote side is an optional parameter and if it is not
set, the default value defined in thiBalog will be used.

- Minimum time between calculationsUseful for reducing the number of recalculations when
real time data is updated frequently. This is only used for the calculations, the RealtimeQuotes
window (see?.3.4 will not be affected.

- Save favourite real time instrument namegreal time identification codes) for faster
workspace starup times. You set the number of days that Quantlab will save what

Pagel6



243

24.4

instruments you have used. When the options is set at 1 or more days, orugt&uantlab

will request a subscription to these real time items even before you open a workspace. Often,
this will drastically reduce the time it takes to open workspaces havingymeal time
instruments. The accumulated history of real time items can be cleared by pressing the Clear
button.

In tab Extended:

Maximum number of warnings Put a limit on how many warnings will be written in the
warnings window each time an attachmentesaluated. If the number of errors in your
expressions or database is very large, the mere update of this window may be time consuming.
In such a case it may be useful to limit the number of warnings until the errors are taken care
of.

Calculation threadpriority. This can be changed in order to let Quantlab get larger or smaller
part of the CPU time of the computer.

In tab Messages:

Warnings, displaying rurime messages such as raahe data missing or neavaluating
functions.

Compiler messages and ems, displaying information from the compiling session.

The display level can be individually set to:

Always show
Show if message window visible
52y Qi aKz2g

In tab Table:

Show errors message$n some cases, errors may be specific for a cell in a fablshow all
upcoming errors within the tables, click this check box.

Enable direct cell editinglf this is checked you can select a cell in an input column in a table
and edit directly. Otherwise you have to douglick or use F2.

In tab Edit (for the epression editor):
Choice of indentation Automatic indentation and tab length.

Debug windowsNumber of decimals when showing numerical values of variables.

Colour display setting Either use default setting or choose your own colours for different
typesof text in the expression windows.

Pagel7



3t NRANI YYAYTI Ay vdzZ yitlo dzAy

3.1 Introduction

The Quantlab language QLang makes financial programming easy! QLang is designed to work with time

series data vectors and matrices. Included in QLang is also an extamsitien library with many
tailor-made fixed income functions that makes programming fast and efficient.

Programming in Quantlab follows these basic steps:
1. Write code in an expression editor
2. Check and compile the code [by pressing F7, or choosing Expijl€om
3. If code compiled correctly, the "out functions" appear in the Workspace browser
4. Drag and drop the functions from the Workspace browser to graphs and tables

When programming is finished and workspaces have been created they are ready to be distdbuted
others. Everyone using Quantlab, either Developer or User Edition, can now run all analytics of the
workspace presented in graphs and tables.

3.2 A simple example
[ SGQa t221 G I AAYLXS FdzyOiAzy (GKFG FRR&a (g2
number my_add(number x, number y) = x +Yy;

In order to make this function available for presentation in tables or graphs the keyword out is used,
written at the start of the function definition:

out number my_add (numberx , numbery )= x+y;

If you write this function in an expression wind@lsert¢ Expression) you will be able to compile the
code by pressing F7. As the code is correct you will not get any warnings. Try to change the code to
something incorrect, for example:

out number my_add (numberx , numbery )= Xx+y+

If you then pres$=7 again, you will get an error message (if messages has not been switched off in
under options | messages).

Change back to the original version of the function, recompile the

Fle Edt View Insert Expr Toc code and look for the Workspace window. In the Workspace window
(Viewg Workspae) you will find a + sign. If you click the plus sign
Workspace you will find the function my_add. This function is available to attach
: to atable. To do so, insert a new table (Inggfable) and it a name.
[ Table Then drag the function my_add (using the left key of th@use) to
the table window and drop it there. Two Number Edit Boxes will
appear next to the table, one for each parameter of the function,
and these are used for choosing the values of x and y. Enter two
numbers in the boxes and press Recalc to make Qalamtvaluate
your function and show the result in the table.

Chapter6 explains more about how to format tables and graphs.

Pagel8

y d



3.3 Keyword list

This section is a summery of the keywords that form the language base. Keywords are marked with
blue when written in the expression editor. Note that a description on each keyword can be found in
the function browser.

The keywords Module, Public and Impare used for the management of expressions.

module Themodulekeyword creates a namespace of functions.

public Thepublickeyword assigns a function to be available outsicecalule.

import Theimport keyword loads the public functions of a module sattkhey become
local functions.

The keyword Return is used when defining functions in the standard form.

return Thereturn keyword terminates the current function call and returns the valug
object following it. Se8&.4.1

The keyword void is for defining procedures.

void Thevoidkeyword replaces the return value type for a function that does not retf
any value. Seg.4.1

The keywordut is special for QLang and used for making functions available in the user interface.

out Theout keyword assigns a function to become available for attachments tohgr
or tables after compilation. Se&&4.4for the use on parameters.

The keywordptionis special for QLang and used for certain options for variables and functions.

option option(nullable) is used in a function definition before a parameter name to n
the function possible to call with a null value in that parameter.

option.

option (category:<string3 is used immediately after the function header in a libr.
file to indicate what category the function shall appear in within the Func
browser. The string contains the hame of the category, either an existing cat
or a new one.

option (com_name:<stringy is used immediately after the function header in
library file to publish the function to the COM interface (for use in excel or C#)
a user defined name. This is necessary if functions in library are overloaded a
doesnot allow for overloaded functions.

The keywords if, switch, else, do, while, for, break and continue are used for flow control.

if else Theif andelsekeywords are used for conditional expression evaluation.35&4.

Pagel9



switch Theswitchkeyword is used when there are several cases in a comparison situ

See3.8.3
while Thewhile keyword is used for conditional loops with initial condition test. 3&el
do while Thedo while keywords are used for conditional loops with final condition test.
3.8.1
for Thefor keyword is used for unconditional loops. S:8.2
break The break keyword terminates the smallest enclosing loop statement (do, for

while) in whch it appears.

continue The continue keyword terminates the current iteration of the smallest enclos
loop statement (do, for, or while) in which it appears, and the execution conti
with the next iteration.

The keywords Try and Catch are usedefwor handling.

try Thetry keyword introduces a code section in which errors are expected to o
See3.8.4

catch The catchkeyword introduces a code section that takes care of the errors in
preceding try section. Sex8.4

The keywords String, Matrix and Vector are used for angagpecific types.

string The string keyword assigns a variable, function or a function parameter to |
string. See3.7.1

matrix The matrix keyword assigns ®ariable, function or a function parameter to be
matrix. See3.7.7.

vector Thevector keyword assigns a variable, function or a function parameter to
vector. See3.7.7.

These keywords are always used in connection with an object type. For example, to create variable
which is a vector of numbers, you write

vector (number) my_variable;

The keyword Series is a special QLang feature used in particular fesdimes calculations.

series Theserieskeyword creates a series of elements by evaluating an expression ¢
range. The dimension of tteeriesis equal to the numbeof ranges. Se8.7.1Q

The keywords Object and New are used when defining objects.

class Theclasskeyword is used when defining an object class. Té&
object Theobjectkeyword is used when defining an object class. $é&
new Thenewkeyword is used when creating an instance of an object.35e8

The keywords typedef and enum are used for defining types.

Page20



typedef Thetypedefkeyword is used when giving new names to types.Se&

enum Theenumkeyword is used when creating enum lists. S&&8.

The keyword Function is used for function reference in function definitions.

function Thefunction keyword refers to a function parameter in a function definition. §
3.4.6

The keyword operator is used when defining operators, typically for objects.

operator Theoperatorkeyword is used when defining operators, $2é.4

3.4 Functions

Functions can be defined in two ways, in the standard way and the compact way. In the standard
function definition the syntax resembles very much the syntax of C++ or similar langiragles
compact form the function definition is written by using only one expression. Both forms can be used
in the same expression window.

3.4.1 Standard function definition
The standard way of defining a function looks like this:

return_value_type function_name (parameter _typel parameter _

< function body >
return < expression >;

}

The function is defined by declaring the return value type, the function name followed by a
parenthesis, and then a function body. Insitie parenthesis all the function parameters are defined

by writing their types and names. Note that each parameter requires its own type definition, and that
these types are specific for QLang. Within the function body the usual variable declarations and
operating statements are written, each ending with a sewibn. The function returns the value of the
expression that follows immediately after the keyword return.

For example, a function adding two numbers:
out number my_add(number x, number y){

return  x+y;
}

The return value type must be declared as any of the QLang types. If the return value type is set to void
and the return statement is omitted, the function returns no value:

void function_name (parameter _typel parameter_namel, &)

{

< function bo dy >

}

The keyword out is used to make a function available for attaching to graphs or tables. For example,
the following function could be attached to a table in order to display a multiplication table:

Page?l



out vector (number) mult (number x){
vector (number) y= [1,2,3,4];
return  x*y;

}

3.4.2 Compact function definition

This is an alternative way of defining functions, which is useful for simple expressions. It is written
starting with a return value type and a function name, followed by a parenthesis corgaine
parameters, and then an equality sign. After the equality sigh must be a complete function expression.
The function takes the following form:

return_value_type function_name (parameter _typel parameter _
function_expression >;

Note thatthe expression ends with a sewwdlon. The my_add example used earlier would look like
this:

out number my_add (numberx , numbery )= x+y;

These functions are often written in one row, but for the sake of readiness, they can be written in
several rows:

out number my_add (number my_x_parameter , number my_y parameter )=
my_X_parameter + my_y parameter;

Important news! The compact function definition has changed since Quantlab 2.4x as it now requires
the return type definition and semi colon after the egpsion.

3.4.3 Instances of functions

When a function is attached to a table or a graphrestanceof the function is created. You may have
several instances of the same function in the same graph or table. In the calculations and user
interface, Quantlab will treat them as separate functions that may or may not use the same input
parameters. Only whethe code, i.e. the definition of the function, is changed this will affect all
function instances.

3.4.4 Function parameters

Function parameters are defined by the type followed by the parameter name, as describgdlin
There is also a possibility to define optional parameters with a default value by setting these
parameters equal to an expression, for instance:

number my_add( number X, number y = 1){
return  X+y;

out number test_ my_add (number Xx){
return  my_add( x);
}

The first function, my_add, has one optional parameter y which is defaulted to 1 if not set, as in the
second function test_my_add. The default value may also be something more complex, for example a
function call:

number default (number x){

Page22



return X*2;

}

number my_add( number x, number y = default(2) ){
return = x+y;

out number test my add (number x){
return  my_add( x);
}

In this example we have defined a separate function called default which calculates the default value
for the function.

When attaching functions to graphs or tables, all parameters, including optional ones are displayed,
without default values.

When caling functions, the function parameters are by default copies (for number, date and logical)
or copies of references (for string and object) of the original variable.

In the following example, the function f2 returns 0 as function f1 only changes a colpg ofiginal
variable.

void fl (number c)

{

c = 1;

out number f2 (){
number b = O;
f1 (b);
return  b;

}

Using the keyworaut before a parameter definition will cause that parameter to be referring to the
original variable (for number, date ardgical) or original reference (for string and object), allowing
change of the external environment. This is similar to the Pascal VAR parameter and the C++ way of
declaring a parameter as a reference (using &).

In the following example, the function f2ttens 1 as function f1 changes the value of the original
variable.

void fl (out number c){
c =1;
}

out number f2 () {
number b = 0;
f1 (b);
return b;

}

3.4.5 Calling functions

There are a large number of pdefined functions in QLang for general dirthncial purposes. These
are divided into groups according to their purpose and can be found in the Quantlab function browser.
The function browser is made visible from the Quantlab menu bar (§iewnction Browser).

Both userdefined functions and prelefined functions are called similarly to common programming
languages. For example the usiafined function my_add iB8.2 could be called like this:

result = my_add 2, 3);

if we have defined a variable called result, of the type number.

Page?3



Important news! From version 3.0 and onwards, functions without any parameters must be called
using an empty parentheses, for example my_func(). This is a common case for mahynebjser
functions.

3.4.6 Function pointers

In Quantlab 3.0 the concept of function pointers is introduced. It is useful in various cases, for example
when performing optimisation calculations. Here is an example which uses the minimisation function
zero_bisect. See al$b7.3for information on object classes.

class param_object{

/I This object contains all parameters that are used for

/I calculating the function f,except for the variable x.
number a_param;

h

number f(param_object p, number x){
/I The object function

return - p.a_param*x + 1;
}

out number test(){
/I Find x that makes f = 0.
param_object p = new param_object;
p.a_param = 4;
numberx1= -3;
number x2 = 4;
number tol = 0.001;
return  zero_bisect(p, &f, x1, x2, tol);

}

On the last line we call zero_bisect with a reference to the function f using #igr& The function
zero_bisect requires that the function that is referenced to (in our case, f) has two parameters: An
object andan xparameter. In this way you can construct a function f that is arbitrarily complicated as
long as it is a function of a single variable x.

The following example shows how to define your own function pointers. The function calc below
performs anycalculation using a function f that takes two parameters. We have defined two such
functions: plus and minus. The last function below uses these functions depending on the user input.

number plus (number a, number b) = a + b;

number minus (number a, number b)y=a - b;
number calc(number a, number b, number function (number a, number b) f){
return  f(a, b);
}
out number test(number a, number b, string method){
if (method == "plus’)
return calc(a, b, &plus);
if (method == 'minus’)
return calc(a, b, &minus);
}

The syntax for the declaration of the function pointer is thus:

<return_type> function (<type>param_1, <type> param_2¢é) function_par

More examples of function pointers are found in the case stud/i2

Page24



3.5 Local and global variables

In a function, local variables may be declared as in other common programming languages, with or
without initialisation, for example:

<function declaration>{
number Xx;

numbery =5;

vector (instrument) i;
é

}

For global variables the treatment is somewhat more special. Global variables are only common to all
calls from functions within the same expression window. An example:

number Xx;
out number my_function (number y){

if  (null (X))
X = 0;
else {

}

return X*y;

X = X+1;

}

Each time my_function is called, the variable x will be updated. An extensive example of how to use
global variables is discussedsii9.

Important! It is important to note that multiple instances of functions attached to the same or different
tables or graphs will all refer to the same instance of the global variable.

3.6 Opaators

Common mathematical and logical operators are available in QLang. Operators work like ordinary
functions, for example allowing vector and matrix expansion,3seés.

Arithmetic operators:

+ addition

- subtraction

* multiplication

/ division

A power (can also be written using the function pow)

Note! The type of multiplication is determined by the operands. A multiplication of two vectors will
result in a scalar (so called scalar product). A multiplication of matrices or a matrix and a vector is
treated as a matrix multiplication. S&e7.7.

Logical operators:

Page?5



! logical negation

I= not equal to

&&  logical AND

I logical OR

<,> logical relation operators
== logical equality operator

There is also a simple conditial operator available using the following syntax:
<conditional expression> ? <expressionl> : <expression2>

If the conditional expression is evaluated as true then expressionl will be returned, otherwise
expression2. For example, the following functieitl return x if it is positive, otherwise 0.

number my_function(number x) = x>0 ? x : 0;
Quantlab will perform a shottircuit evaluation of logical and conditional expressions, only executing

those that are necessary.

3.7 Data types

QLang carries a rich fayf types, much like any modern programming language.

3.7.1 Basic types
The number of basic types in QLang is limited for ease of use. QLang has the following five basic types.

Type Description Literals

Number The basic numeric type Numbers are simply entered as they are. Very si
or large numbers can be written with mantisg
then d, D, e or E, then the exponent. 1-26s
interpreted as 0.00012, or 1.2 basis points.

Date The basic date type Dates are written using # then |S@ndard dates
#200012-29 is interpreted as the 29th ¢
December 2000.

Logical The basic Boolean type True or false.

String The basic character string type Strings are encapsulated by simple or dou

guotation marks. Both ‘text’ and "text" ar
interpreted as strings containing the word text.

Object The basic object reference typ¢ No literal.

There are no specific integer, float, percentage or basis point types; the number type covers them all.
Of the above basic types, only the object basic typenoatve used directly in variable or function
parameter declaration. Instead of the object basic type, the object types described below are used.

This is an example of using some basic types to get different user controls when attached to a table.

out number myFunc(string myStr, number myNum, date myDate)

{

é

Page?6



}

Quantlab recognizes the types and automatically creates appropriate controls.

3.7.2 Object types and member functions

There are many object types available in QLang. Many of them are financial, Suslr@sent and
curve, but there are a others used for presentation of data, for mathematical purposes and so on.

Objects are generally created as a result of QLang function calls. They can then be stored in variables
or used directly for further functionadls. Objects also have member functions, which can be called
using a standard dot notation.

Below is an example of a function that returns the yield of an instrument on a specified trade date. An
instrument object is created from the information in thetdhase, and then the member function
yield) is called to extract the sought yield.

number my_yield(instrument_name i, date tradeD){
return  instrument(i, tradeD).yield();
}

Some objects methods have a corresponding function in another object. As an lexdogh rows
below will return the dirty price of an instrument priced from a zero coupon curve model fit of the
market rates.

fit_result.dirty_price (instrument);

instrument.dirty_price (fit_result);

3.7.3 Creating new classes

An introduction to working withuserdefined classes

In Quantlab 3.0 it is possible to create new classes with member variables and member functions. The
syntax is very much in line with C++. Below is an example of a definition of an object class that stores
two numbers, called my_paifhe object class has a member function that adds the two numbers and

a creator with the same name as the object class. The last function can be attached to a table in order
to test the object class.

class my_pair

{
public:
number add() ;

number x
numbery

Note that you need to declare all member functions inside the class defingtamiis done with the
function add() above.

my_pair my_pair (number x, number y)X{
my_pair tn= new my_pair
tnx=x ;
tny=y
return  t_n

}

number my_pair .add(){

Page27



return X +y

}

out numbertest_ my_pair (number x, number y){
my_pairp = my_pair (X,Y);
return  p.add();

}

The class definition syntax

A userdefined class is defined using the following syntax:

class <class name> [ : <class to inherit from> ]
{ [public:]|[private:]
t;name of constructor (i.e. class name)>(<params>) ;]
t“virtual <return type> <name of virtual member function>(<params>) ;]
t;name of member function>(<params>) ;]
t;type of member variable> <name of member variable> ;]
;.
<class name>.<name of constructor>(<params>)

[: <name of member variable>(<params>),...]
{ <body>]

<return type> <class name>.<name of member function>(<params>)
{ <body>}

A class may inherit from another clasgdled a supeiclassg by using the familiar <class to
inherit from> notation above.

In aclass ¢ as opposed to anbject ¢ all members and member functions (including constructors)
are declarecbrivat e: by default. This means that they cannot be accddsg any code outside the
class. In order to make them accessible from the outside they need to be within the scope of a
precedingoublic: ~ declaration:

class myClass

{ .
public:
number get_secret_number () ;
private:
number secret_number ;
P

Now, thesecret_number above can only by accessed through the get_secret_number().

A special type of member function calleg¢@nstructoris used to initialize the member variables of a
class. It is possible to do this using the familiamfame of member variabl® initialize>(<params>)]
notation, as in the following example:

class myClass

{
public:

Page?8



myClass(number n)
number get_secret_number () ;

private:
number secret_number ;

}

myClass.myClass(number n)
: secret_number(n)

¢
number myClass.get_secret_number()
{
return secret_number ;
}

Note that a constructor cannot have an explicit return type, since it implicitly returns the newly created
class object.

Thevirtual ~ keyword declares a virtual member function that can be overriddgrany inheriting
class as seen in the following example. Note that all virtual member functions need to be defined in all
classeg also in the supeclass:

class A
{ .
public:
virtual string f0 ;
string g0 ;
P
string  Af()  {return AnA. fo ;
string  A.g() {return AA. go ;
class B: public A
{
public:
virtual string () ;
string 90 ;
P
string B.f() {return AiB. fo ;
string  B.g() {return AiB. go ;
class C: public A
{
public:
virtual string () ;
string 90
}
string  C.f() { retun A C. f 0O
string  C.g(){ reun AC. go ;
out vector(string) test_f()
vector (A)v =] new A, new B, new C];
return  v.f();
}
out vector(string) test_g()
vector (A)v =] new A, new B, new C];

Page?9



return  v.g();

The output table below shows the difference between theual  member function f() and the
normal member function g():

test_f-1 | test_g-1

& f &g
B.f &g
C.f &g

Scope of class members and the use of this

The familiar dot notation is used to access member variables and calling member fsrintglass:
Aa= new A;

a.my_number = 42 ; // Accessing one of A:s members

a.f() ; // Calling one of A:s member functions

By explicitly naming the class name after the dot it is possible to access member functions or variables
that are normally hidden by definitions in inheriting classes. This can be done even if the function is
not declared asirtual

Bb= new B;
b.f() ; /I Calling the f() member function defined in B

b.A.f() ; // Calling the f() member function defined in A

It is possible for a member function of a class to obtain a handle to itself by usitigsthekeyword.
This can for example used as a paramétdunction calls as in the following example:

string  func(Aa )

return  a.f();

}
logical A.func( )
{ string sl1= this .f();
string  s2 = func(this) ;
} return sl ==s2; // always returns true

Please note though, that a member function can always access all of its own member variables directly
without usingthis

Page30



Casting classes

When working with class hierarchies it is often useful to convert a handle to a super class object into
a handle of he actual base class it belongs to (or any other class in between). This is called a dynamic
cast and is performed by using thgnamic_cast operator:

A a= new B; /I This is possible since class B inherits from class A

Bb= dynamic_cast <B>(a); //Con vertintoahandletoaB

If the cast is not possible due to the classes not being members of the same class hierarchy it will fail
and an error will be thrown.

When writing library files, it is also possible to add new member functions toibuilbjectclasses,
see4.3. More examples of creating object classes are found in the case stB8dy2in

3.7.4 Example of classes and operators
Here is a simple example where complex numbers and the + operator is defined in a library file:
class complex {
private
numberr, i;
public
complex( number r, number i);
number re();

number im();
complex.complex( number r, number i ) : r(r), i(i) {;}
number complex.re(){

return r

number complex.im(){

return i

/I Operator overloaded using a member function

complex operator  + (complex ¢, complex d)

return new complex(c.re() + d.re(), c.im() + d.im());

It can betestedby calling a functiofike this

Page3l



out vector(number) test _complex () {
complex a = new complex( 1.2, 3.4);

complex b = new complex( 5.6, 7.8);

complexc=a+b;

return  [c.re(), c.im()];

3.7.5 Type names

In QLang several type names are defined. The type name is simply a different name for one of the
already existing basic or object types, similar to using typedef in C/C++. An example of a type name is
instrument_namewhich really is a string used for finding an instrument in the database.

There are two purposes of type names: The first is to clarify the programming code; the second is that
the graphical interface of Quantlab might recognize them and create controktapqgropriate for the

input. Taking instrument_name again as an example, a control box for an instrument_name presents
a list of all instruments in the database, thus making instrument selection easier.

3.7.6 Definition of types

In Quantlab 3.0 you can use tkeyword typedef to rename existing types, as in C++. For example the
number type can be called my_n:

typedef  number my_n;
my nj=1;

out my_n test(){
return j;
}

The user interface recognises your types as they are only other names for existing types.

3.7.7 Enum types

There are a number of enum types defined in QLang. In earlier versions, they where only strings, now
they are distinct types written with capital letters. A couple of examples are:

error_type: E_UNSPECIFIC, E_CONSTRAINT, E_NULL, E_RANGE, etc.
rate_type: RT_CONT, RT_SIMPLE, RT_EFFECTIVE, etc.
day_count_method: DC_ACT_365, DC_ACT_360, DC_30_360, etc.
bd_convention: BD_NONE, BD_FOLLOWING, BD_MOD_FOLLOWING, etc.

See the Function browser for more information on types.

Important news!In Quantlab wokspaces, or lib files, created in version 2.4 or earlier, you must change
the string enum type names to the new type names in order to compile the files.

Page32



3.7.8 Declaring your own enum types
In Quantlakthere is a possibility to create own enum types

enum weather_type {  WT SUNNY, WT CLOUDY, WT RAINY};

You can show the value in string format following this example:

enum my_enum { GR_HELLOoption(str: "Hello") » GR_HIoption(str: "H )
out string  test(){

my_enumg= GR_HELLQ
return string ()

3.7.9 Vectors andmatrices

Creating vectors and matrices

Objects can be aggregated into vectors and matrices. The basic way of creating vectors or matrices is
by using brackets:

Vectors are created using brackets and comfalgmentl, element2, ...]

Matrices are createdrébm row vectors with brackets and commBelementll, elementl2, ..],
[element21, element22, ...], ..All vectors must have the same size.

All elements in a matrix or vector must be of the same type. The type is declared within parentheses
after the keyword vector or matrix. Here is an example of how to create a vector of three elements:

vector (number) v =[1, 2, 3]

It is possible to specify the dimension of the vector or matrix without assigning it:
matrix (number) m[3,7];

The matrix m will have thremws and seven columns. It is also possible to omit the dimension when
declaring the matrix or vector:

matrix (number) m;

The matrix m will initially be null and have zero rows and columns and but this can be changed in
runtime. Here is an example of howactor can be declared and assigned:

out vector( number) vtest ()
vector (number) v;
v =[2,3];
return v,

}

A common way of producing vectors or matrices is however by the ugetdr (or matrix) expansion

This means that if you for example cdiliaction with a vector rather than a scalar, Quantlab calculates

a function value for each element in the vector. This also works for matrices. In the following example
a function taking scalars is called with one scalar and one vector.

number my_add (numberx , numbery )

Page33



{
}

out vector (number) f1 (numberx )

return = X + y;

vector (number) v =[1, 2, 3]
return  my_add(x, Vv);

}

When calling the function my_add with a vector in the second argument, the function will expand over
the vector v. This mearthat the number x is added to each element in the vector, and the result is a
vector that the function f1 returns.

Note! When using vector expansion, you must be sure that you call the function with a vector where
the elements are of the same type asthrgument type in the function you are calling. For example,
if the argument is of the type date, then you must have a vector of dates as input.

Some functions naturally return a vector, for example the curve object member furinstmments()
that returns a vector of instruments.

Copying vectors and matrices

A direct assignment of one vector to another gives only an assignment of the reference, i.e. not the
content of the vector. Therefore, the following example returns [1, 45, 3]:

out vector( number) utest ()}
vector (number) u, v;
v = [1, 2, 3]
u=v;
V[1] = 45;
return  u;

}
To copy the content of the vector you could for example use a help function:

v_c(number v) = v

which uses the vector expansion to create a copy. There is also anbiuifictionclone_vector that
gives a true copy of the vector.

Accessing and assigning elements in vectors and matrices

Elements in vectors and matrices can be accessed via indexation, using brackets. Indexations start at
0. For example, the following function retwwthe value 6.

out number my_vector_function 0{
vector (number) x = [3, 5, 6];
return X[ 2];

For matrices, elements are accessed via row and column number, separated by comma. The following
function takes out the value 5 from the matrix.

out number my_matrix_function 0 {
matrix (number) y = [[ 1, 3], [5, 6]
return  y[ 1, O];

Page34



(Remember that indexation starts at 0.) Assigning values to matrices and vectors is done in the same
way. For example

y[1,0]1=77;
will set the element in the second row and ficgtlumn of the matrix y to the value of 77.

Multiplication of matrices and vectors

When multiplying two vectors, the inner product is always used. When multiplying a matrix with a
vector the number of columns or rows must be the same as the number of aelsrirethe vector. If v
is a vector and m is a matrix, then

v*m

will produce vector if the number of elements in v is the same as the number of rows in m, otherwise
an error message will be shown. In the same manner,

m*v

will produce a vector only if theumber of columns in m is the same as the number of elements in v.

Note that a vector in QLang does not have a "direction"; there are no explicit column or row vectors.
If you want to be explicit when handling column and row vectors, they must be declanaataices.
For example, the following two functions produce the same scalar result:

out number v_mult () {

vector (number) v = [1, 3, 5]

matrix (number) m= [ 4, 5, 6], [2, 1, 7], [3, 5, 2]
return  v*ntv;

out matrix (number) m_mult () {

matrix (number) v_row = [[ 1, 3, 5]];

matrix (number) m= [ 4, 5, 6], [2, 1, 7], [3, 5, 2]
return  v_row * n¥transpose (V_row );

}

Note that in the first case the QLang compiler will know that a scalar always will be returned, if the
code could be run. In the second case tlimension of the result is dependent of the dimensions of
the matrices, if they are changed. So the function has to be declared as a matrix.

3.7.10Series

The series is a special form of aggregate, based on one or more range objects. The ranges describe a
multidimensional space, and to each point corresponds one element that can contain any object,
vector or matrix. Each element must, however, contain the same type of object.

As opposed to a vector or a matrix, the series contains information about the rangegthaeen used

to produce the aggregate object. Therefore, series are very useful when dealing with historical time
series data, or when producing graphs with equidistant values on-thesx For example, a series can
contain a date range together with pgs on an instrument for the date range. A series can be
converted to a vector, but then the information about the range is lost.

In practice, a series is a compact way of making the familialdgy’ construction, and keeping the
information about the ange. To construct a series you can either call a function with a series return
type or use the keyword series. When defining a variable of any type of series or using a series as a
return type you have to specify the series. it is done with the followingax:

series <loop_type>(calculation_type)

Page35



where loop_type is the type of the loop variable, for example a number or a date, and
calculation_type is the type of the values calculated, for example a number, an instrument, a
vector(number) etc.

This is anxample of a onglimensional series:

number myHelpFunction(number x)

{

return X *X;

}

out series  <number> (number) myOutExpr()

{

return  series (i:1, 10, 1; myHelpFunction(i) );

}

The first function takes one number argument and multiplies the number with itself. The second
function calculates the content of a series. In the return type we have specified that the loop goes over
numbers and the resulting values will be numbersagwel ¢ KS FANRG al NBdzySyidat¢
(before the semtolon) are defining the range, as it states that the loop variabldl start at one and

go to ten with step one. The last argument is the expression that is evaluated for each vaheh of e

loop variable. The return object will be a series of ten numbers: 1*1, 2*2, and so on. When the function
myOutExpr is attached to a table you will se the range in the first column and the result from
myHelpFunction in the second column.

The series funton is often used to loop over time series data having dates as input or over numeric
values for curve creation, in particular when creating graphs.

Important news!In Quantlab workspaces, or lib files, created in version 2.4 or earlier, you must change
the series definitions. The type of the loop variable has to be specified and the range function has to
be removedNote also the use of sersblon in the series definitiont is ro longer possible to create
multi-dimensional series of the type seriesteta<number>X

It is also possible to create a series where each element is a vector or matrix. One common way is to
use the vector expansion, as in the following example:

series <number>( number) my_series (number x){
return  series (t: 1,10; x*t~2);
}

out series <number>(vector (number)) vector_series 0 {
vector (number) v = [1, 4, 6];
return ~ my_series (Vv);

}

There only exists series of vectors, not vectors of series. But series of vectors can for example be
efficiently applied when calculating time seri@spendent statistics for several financial instruments,
stored in a vector.

It is possible to do vector algebra manipulations on a series of vectors, for example taking a scalar
product:

out series  <number> (number) series_prod(){
series <number> (vector (number)) y = series (t: 1,10; [1, t t*2]);
vector (number) x = [1, 2, 3]
return Y*X;

Page36



A financial application of this could be to calculate the value of a portfolio; then y would contain daily
prices for a number of assets and x the corresponding dsddings (constant over time). Then the
series_prod would give the daily value of the portfolio.

In general, vector manipulation, such as inner product or concatenation, can be done on two series of
vectors, affecting each vector separately, for example:

out series  <number> (number)  series_prod2()}{
series <number>( vector (number)) a
series <number>( vector (number)) b
return  a*b;

series (t:0, 10; [t, t+]);
series (t:0, 10; [2%4, 2*t*t));

}
where a vector of number is returned, or:

out series <number> (vector (number)) series_concat(){
series <number>( vector (number)) a series (t:0, 10; [t, t+]);
series <number>( vector (number)) b = series (t:0, 10; [2*, 2*t+));
return  concat(a,b);

}

where a series of vector with four elements is returned.

It is alsgpossible to retrieve particular elements from a series using brackets []. The index value within
the brackets starts at zero for the first element and then increases by one for each element,
independently of the range type. For example,

out number test(){
series <number> (number) x = series (t:5, 15; t"2);
return  x[0];

}

This function will return 25.
There is a possibility to expand over a series similar to vector or matrix expaBsiaf For example
you may write a functiom that takes to scalars and call it by two series<number>(number):
number f(number x, number y) = x*y;
out series <number>(number) s()}{
series <number>(number) s1 = series(t: 1, 10; t"2);
series <number>(number) s2 = series(t: 1, 10; t);
return  f(s1, s2);
}
The functions will return a series of number with the index range going from 1 to 10. This possibility

can also be useful when you want ttopa scatter graph using two series of number. Then you can
create a series of points:

out series <date> (point_number) scatter(instrument_name i_n1, instrument_name i_n2,

date from, date to){
series <date> (number) s1 = series (t: from, to ;instrument(i_n1, t).quote () );
series <date> (number) s2 = series (t: from, to ;instrument(i_n2, t).quote 0
return  point(sl, s2);

}

This function can be attached to a graph.

Some other examples of how to use series objects are fouBdLiB.8and8.10,

Page37



3.8 Flow control

QLang supports common flow control structures: if/else, while, do/while, for and try/catch.

3.8.1 If, else, do and while

These structures work like in C/C++ (and many other languages), using a logical expression, called
condition in the exampleddow. The if statement has the following syntax:

if (condition )
true_statements

else {
false_statements
}

Alternatively, the else part can be conditional as well:

if (condition ){
statement

elseif  (condition) {
statements
}

The whilestatement is used for iterated calculations, depending on a condition:

while  (condition )
loop_if_true_statements
}

The statement can also be executed before the conditional test:

do{
loop_until_false_statements

while  (condition );

3.8.2 The for loop

Thefor loop has been changed in version 3.0 in order to be in line with C++. Thus the loop variable has
to be explicitly defined (in or before the féwop), and the start and stop criteria as well as the step
can be defined more elaborately. Here is one eglnusing a range from 0 to 10 with a step size of 2,
and another example using a date range from 1 of March 2002 to 31 of March 2002.

for (numbert=0;t<=10; t = t+2){
loop_statements;
}

for (date t = #2002 - 03- 01; t <= #2002 - 03- 31; t++)
loop_statements;
}

This means that if you use 0 as start and < as end condition the for loop will correspond naturally to
the vector indices. Note that for loops in workspaces created in version 2.4 include the end point which
corresponds to a <= end adition. Assume you have the following code in Quantlab 2.4:

out vector (number) for_24(){
vector (number) x[10];
for (i:0, v_size(x) -1)
X[i] =1i;
return = Xx;

Page38



This should in Quantlab 3.0 be changed to:

out vector (number) for_30()}{
vector (number) x[10];
for (number i = 0; i<v_size(x); i++)
X[i] =1i;
return  Xx;

For your convenience, it is not necessary to change the for loop in Quantlab 3.0 as the old syntax is still
valid. However, you are advised to make the change as the old style for loop roagdiete in later
versions. Note that for loops using the range function are not valid as the range object class is obsolete
already in version 3.0.

3.8.3 The switch statement

The svitch statementis a substitutefor nestedif/then/else statements that compare aariable to
several "integral" values(ch as a number or an enunfhe basisyntaxis outlined below

switch( <variable> )
{
case first_value:
< statement to execute when variable equals first_value >
break ;
case second_value:
< statement to execute when variable equals second_value >
break ;
default
< statement to execute when variable does not equal any of the cases >

break ;

Here is an example of how to use the switch statement.

out string  spell_number(number n)

{
switch (n)
case 1:
return ("One") ;
break ;
case 2:
return ("Two");
break ;
case 42:
return ("Fortytwo") ;
break ;
default
return ("Dunno") ;
break ;
}
}

Page39



3.8.4 Error handling: Try and catch
Try and catch allow handling of errors thraty occur. The syntax of the {oatch statement is the

following:

try {

< statement >

catch (error_typel ){
< statement >

}

catch (error_type2 ){
< statement >

}

<...>
catch {

< statement >

}

The catch statement takes an error_type as input. To catch all types of errors, the catch statement can
be written without parentheses and argument. The following error types are available in version 3.0:

TYPE NAME Old name Description

E_ABORTED N/A Aborted calculation.

E_CALC ‘calc’ A calculation was unsuccessful, for example "Fit faile
a zerecoupon estimation.

E_CONSTRAINT | 'constraint’ Elementwise call using for example different sizes
vectors.

E DATABASE 'database’ A database communitian failure, for example ai
attempt to retrieve a quote in a quote field that is n
defined for an instrument.

E_ENUM ‘enum’ Invalid enum string, for example Invalid rate_type.

E_INIT N/A Not initialized object.

E_INVALID ARG | 'invalid_arg' Invalidargument to a function.

E 10 N/A I/O error.

E_NAME_LOOKUF

'name_lookup'

Error in external name lookup, for example Unkno
instrument.

E_NO_DATA 'no_data’ Data is missing, for example in a price quote.

E_NULL ‘null’ An attempt to use a null value, fexample as a conditio
in an itstatement.

E _PARSE N/A Parse error.

E_RANGE ‘range’ Index out of range, for example in a vector.

E_REALTIME N/A Realtime feed error.

E_TIMEOUT N/A Time out error.

E_UNSPECIFIC 'unspecific' All other errors.

Page40



The categories_ CAL@nd E_NO_DATAre "soft" errors, i.e., those that Quantlab handles and
converts to null output values if the user does not handle them. The others are "hard" errors: if the
user wants to ignore them, they must be taken care of inyacatch statement.

Here is an example of how to use the-tgtch statement.

out number f(number n) {
vector (number) a = [1, 2, 3J;

try {
return  a[ nj;

}
catch (E_RANGK
return 4711;

}

catch (E_INVALID_ARG){
return 17;

}

catch {
return 42;
}

}

If n is between 0 and 2 the function will return the corresponding element of a. Depending of the type
of error that may occur because of the argument n, the function returns other numbers instead (4711,
17 or 42).

Here is another example of how to usg &ind catch in combination with the throw() function:

out number f(number x){

try {
if (x == 1) throw (E_UNSPECIFIC, 'hello" );
if (x == 2) throw (E_RANGE ' hi" ),
else return x*10;

}

catch (E_RANGE {
return X*7;

}

}

In this case we produce errors and throw them, depending of the value of x. If x is equal to two, the
range error is caught and 14 is returned, but if x is equal to one, the unspecific error will appear in the
warnings window with the texhello' and thefunction evaluation is terminated.

Sometimes it is useful to get hold of the error message. This can be done using a variable called "err"
which is of the object type error. This variable is created by Quantlab when an error is produced and
it is availablaewithin the catch statement. Here is an example of how it can be used:

out string  test(humber n){

try {
vector (string) x =[ " Hello' , 'Ciao' , 'Salut' J;
return  x[n];

}
catch (E_RANGK

return  err.message();
}

3.9 Comments

Comments are created with 4t the beginning of the row or by using /* and */. Here are examples
of the two possibilities.

Page4l



/ Aone - line comment
[* A comment using
two lines */

Important news! The old style comment using % is no longer valid. Please use // instead.

3.10Debugging

The Quantlab debugger enables the developer of QLang code to debug one or several functions
attached to graphs or tables. It is important to notice that what you actually debug is a selected
attached expressions with the input parameters given by the uderface. Follow the procedure
below to debug the code:

1. In the workspace window, select an attachment (i.e., the function name to the right of the
graph or table symbol) and click the right motméton. Then select Debug and the
corresponding attachment Wibe marked in debug mode. Repeat this for other expressions
that you want to debug within the same session.

2. Doubleclick an attachment in the workspace window. This will activate the corresponding
expression window and put the cursor at the first rowtlod expression.

3. From here, you can set breakpoints by putting the cursor at a executable row and pressing F9
or by clicking the left mousbutton in the left margin of the edit window. A red circle will
appear to indicate a breakpoint.

4. In the workspace window, doubldick on the view with the attachment that you want to
debug. This will activate the graph or table. Input desired values for the parameters and press
Recalc.

5. The debugger will execute the code of the attached expressicarked with Debug until a
breakpoint is encountered.

6. Step in the code by using the function keys:
Press F5 to continue to next breakpoint,
Press F11 to step into each row of code,
Press F10 to step over,

CtrkF5 to finish debugging

When debugging you maryspect the call stack and the values of local and global variables by selecting
View | Debug |Call stack or View | Debug | Variables. Vectors may be expanded by clicking the + sign
in the list.

3.10.1Immediate window

You can also inspect variables and exprassin an "Immediatevindow". Choose Debug | Immediate
window to get a dialog where you can input simple expressions and evaluate them while debugging.
For example, you can examine instrument objects by taking out yield, price etc or you can view a
separateelement in a vector by using brackets.

Page42



42NRAROGAY3I fAONINEB FTAESAE

All functions written in an expression window can only be accessed within the workspace. To create
functions accessible to all workspaces you can write library files. The path to these fieserset in
the first path edit box in Tools | Options | Extended, separated with sewton (;).

4.1 Creating library functions

In the workspace browser click the right mouse button and select Show Library. This will open folders
corresponding to the pathsiTools | Options | Extended. The first folder is the binilgl_libs to which

a path does not have to be set. Select File | New Library File and create a new file in a chosen folder.
This folder will be added to the path if it is not already there.

Write the following code in the expression window corresponding to the library file:

number my_lib_function(hnumber x)
option  (category: "Test' )

return X*X;

}

The keyword option is in this case used for defining the category for the function. This meaas that
folder called Test will appear in the Function browser, containing the function my_lib_function.

Choose Expr | Compile All which will compile your library file together with all other library files. Now
you can open the Function browser and inspectryjiomction. Save the library file by clicking the right
mousebutton on the corresponding file symbol in the folder, and selecting Save, or use the menu File
| Save Library File.

4.2 Writing overloaded functions

It is possible to define overloaded functiong. functions with the same name as another function

but having other parameter definitions. For example you can define several functions with the same
name and return type but with different types of a parameter. Or you can define several functions with
different number of parameters. Of course, all overloaded functions must have the same return type.

4.3 Adding member functions to object classes

In library files you can write functions that are treated as member functions to existing Quantlab
objects. This mans that you can for example hook on your own valuation methods or you can add
methods giving redfime or database data. We illustrate this with two examples.

4.3.1 Adding a valuation method to an instrument

In this example we will show how to add a functiaovirgg a number output to an instrument object. A
member function is created by using the duttation that also is used when calling the function:

number instrument.my_price(instrument i, number param){
number answer;

return answer;

}

The first argument to the member function must be the object itself. After you have compiled the
library file this function will appear in the member function list of the instrument object.

Page43



4.3.2 Adding a quote field method to an instrument

In thisexample we will show how to add a member function to an instrument that returns a turnover
volume for that particular instrument.

First, you have to define the appropriate quote field in the database. See the manual for DatabaseTool
for further informationon this subject. Start by defining a new quote field by entering a new row in
the table QuoteDef.

QUOTE_NAME|QUOTE_TYPE|QUOTE_COLUMN_NAME ||FID_COLUM N_NAME |REAL_QUOTE

volume number volume |vo|ume ‘ 0

The volume is of the basic QLang type number and réfeascolumn in the Quote table that has to

be defined, and which in this case is called volume. If you want to have real time data, you also have
to define a new column in the table RealtimeLink called volume. There you write the FID number for
the volumefor each instrument. The last column is set to zero which means that this quote is not a
"real quote", i.e., it cannot be used as a quote_side when pricing instruments.

Now you have to define a member function that retrieves this data. This is simptaiasily have to
call the member function get_quote_num which gives any numeric quote, given the name in the
QuoteDef table:

number instrument.volume(instrument i){
return  i.get_quote_num( ' volume' );
}

After you have compiled the library file this functiaiill appear in the member function list of the
instrument object.

The string parameter of the get_quote functions is not limited to the type quote_side.

If you try to access a quote_side that is not defined for an instrument, this will give a runtime error of
the type'database’.

4.4 Writing help text for library functions

Help to functions written in a library file may be accessed from the function browsesiby special
XML:like tags within the library file.

If we for example have a function looking like this:

string repeat_string(string str, number times)

string tmp = str;
for (i: 2, times, 1)

tmp = strcat(tmp, str);
return  tmp;

}
our help may look something like this:

/*

<help func=repeat_string>

<info>Repeats a string multiple times</info>

<param name=str>The string to repeat</param>

<param name=times>The number of times the string should be repeated</param>
<return>Returns the s tring concatenated with itself several times</return>

Page44



<remark>This function only works when the times variable is larger than or equal to
2</remark>

</help>

*/

The help may be written anywhere within the same library file but it must be within comments,
otherwise the compiler will complain.

For member functions that you add to existing object classesASgou will have to write the object
class hame before the fation name as in this example on the instrument object class:

<help func=instrument.my_instr_member_function>

The following tags are used for specifying the various paragraphs in the help section:

help The help tag must enclose the whole help section. It hasftime' attribute which is
the name of the function.

info This text will be written above the function declaration.

param Parameters help. A function may have several parameters and they arsfiei® by
the 'name’ attribute.

return Help on what the function returns.

remark Any remarks.

example | Example of how to use the function.

You do not have to use all tags within a help section.

After writing the function the help file must be createthis is done from the menu Tools | Advanced

| Generate user help. This operation searches through all the loaded help files and creates help files in
HTML format. The function browser is updated automatically. The help files are saved in the help/user
folder under the Quantlab install directory. An important file in that directory is the template.htm file
which is a template used to create the help. By altering this file it is possible to change the style of the
generated user defined help files.

Page45



5! aAyKES / ha AYGSNFIOS
This is a condensed version of the chapter with the same heading in the API manual "The Quantlab

API".

All QLang functions, including your own functions in library files and dll:s, can be exposed via COM to
Visual Basic. The function dgfions are generated by producing a-fite. To produce such a file from
Quantlab, proceed as follows.

Save your library files in the path that you set in Tools Options, and restart Quantlab.
Choose Tools, Advanced, Generate Type Library.

To access th@Lang functions from VBA in MS Excel, start VBA and verify under Tools, References,
that the Quantlab COM Library is in the list and is active. If it does not appear in the list you have to
browseto the COM library file glab3tlb in your Quantlab folder

In the object browser in VBA all Quantlab functions appear in the gl object with their function
definitions. To get more help on each function, use the function browser in Quantlab.

See the manual for the Quantlab API for more information about the Ctivface.

Page46



6! aAy3d WwKFIEYOSNRZYYdzy OF /G A 2 Y

Some applications have the need of sharing information between them. There are many ways of
solving such user interaction depending on the availablefiastructure. A common method is by
using a common database where users can raad-write information. For some applications where
data is of a streaming type with very frequent updates a more direct communication might be better.

Having an 1QC server in place will create such a direct comatiamdoridge between users of the
Quantlab clients, regardless if they are using Quantlab through an Excel sheet or direct.

The 1QC server will mimic a redahe source feed such as Reuters or Bloomberg. The difference is, of
course, that you have to prade the IQC with your own streaming data coming from a Quantlab user
within the community.

To get some feel for what the IQC can do we will look at two different examples. First we will create a
chat room where Quantlab users can send and receive messages from a bulletin board. Secondly

we will create a market data feed where a market maker can internally distribute some spreads for an
illiquid bond pricer.

First we will look at how to install the IQC server

6.1 Stepby-step installation of the IQC on theerver

The 1QC server is only needed on one server/pc. All Quantlab clients can then communicate using the
same server node.

Using the command linego the folder containing the igcs.exe programme.
Install the service using the following syntax:

C\> iqes ¢S service_name descriptiofpfport] [-f=state_file]

Go to the services window in the control panel and start the service.

It is also possible to run the IQC server in-gervice mode; in this fashion:
C\> iqcsgs Fp=port] [-f=state_file]

It will then service requests until the process is terminated.

The 1QC service can be-imstalled with thecU command:

C\>igcscU service_name

Page47



%, Services - 1ol =|

File  Action ‘Wiew Help

« = | EEFRR 2] 8w

% Services (Local) Mame ¢ | pescription [ status | startup Tvpe [ Logonas | e
%IMAPI _D-Burning COM Service Manages ... Manual Local System
%Indexing Service Indexes co...  Started Autarnatic Local System
%InstallDri\-’er Table Manager Provides =... Manual Local System

riber-Cuantlab Cormmunications Server Starked Manual J
%IPSEC Services ManagesI...  Started Autarmatic
%Logical Disk Manager Detects an...  Started Automatic Local Swstem
%Lagical Disk Manager Administrative 5., Configures... Manual Local System
%Machine Debug Manager Supports lo...  Started Automatic Local System
%Messenger Transmits ... Disabled Local System

M3 Software Shadow Copy Provider Manages s, .. Manual Local System
%Net Lagan Supports p... Started Autamatic Local System
%M:ﬂ' Ter Dark Shavima Saruica D msidee = Mic=hlad I mmal Saruica ;I

Extended h Standard

6.2 Creating a connection to the IQC server from the Quantlab
client

In the same folder as the Quantlab.exe there shdddh file called igc24.qrt or iqc30.qrt depending
on the version of Quantlab. This file is the local communication program that will give the
user/programmer the function library used for reading and publishing information to the central 1IQC
node.

In t’he glab30.ini filg the foIIowing tag will teJI Quantlab th»at thpre is an additional:tieaaé’sou[cg
g At ofS® LY UKAA&A SEFYLIES UKS Lv/ aSNBAOS gl a A
the IQC service was on your local pc, this wdneéldhe name of your pc.
igc {
dil ='igc30.grt’
feed ='IQC'
server =qlbhill
LRNI ' YntmMmMQ
}
For Quantlab 2.4x the equivalent information is found in the registry in the rt tag.

Now we are ready to start Quantlab and see in the lower righth@rner (green icon) that the 1QC is
connected as a redime source.

Page48



4 DAL [ Fod P

Jescripkion

Mo errors)

BLOOMBERG is down; IQC is up; LOCAL is up; IDMN_SELECTFEED is up; SIM is up; SIX is down

6.3 Example of eeating a chat room using IQC
[ SGQa aildFI NI 6AGK gNAGAY3T a2YS O2RS (2 LlzfAaK NP

out result  send(string user, out string message)

{
string  result = message;
if (Inull(message) || message '="") {
igc_publish("IQC", "chat",
[ "user", "time", "message" ],
[ user, sub_string(str(now()), 11, 8), message ]);
message =",
}
return result;
}

We create a function that takes the name of tiger and a message as input. The message we declare
Fa Fy a2dzié LI N YSGSNI 6KAOK YSFya GKFEG Ad oAff
then clear the message box as we reference the message variable and set it to an empty string.

The igc publish function takes four input arguments;

0KS yIrYS 2F GKS FTSSR O0KSNB daLv/ €0

GKS yIYS 2F GKS AlJO ARSYUGATFTASNI GKFG gAft K2fR 2d
a vector or field identifiers for the different bits of information in the igc identifier

a correspnding vector with data for each field in the identifier.

Page49



la AYTF2NXYIFGA2Y 6S &Sy R-dénkfiddesh tiné i fyhakian isicallediThi€ & OK |
information will replace the old information that was last updated in the same way asshpriae of
a stock coming in the market data feed.

After we have published the user name, timestamp, and message we clear the message.

In order to keep track of the history of the chat we can now create a function that will subscribe to the
igc identifier and its fields and then store all incoming messages in a local vector.

We do not need to ask the iqc server if there is any new information. The igc server will push any new
messages out to all clients that are connected and listening on a particglatifier. Again, in the

same way as Quantlab would be triggered by a tick from a quote in théimeafeed from Reuters or
Bloomberg.

vector(string) v_chat;

out vector(string) recv()

{
push_back( v_chat, strcat([ "[",

realtime_str("chat", "time", "IQC"), "1 ",
realtime_str("chat", "user", "IQC"), ": ",
realtime_str("chat", "message”, "IQC") 1));

return  v_chat;

First we have created a global variable (locally in the workspace) eattbdt. This vector of strings

will hold all our received messages from the chat.

{SO2yR 6S ONBIGS | FdzyOiAz2zy aGaNBOQO6OE GKIG GAf
updated data in it. The push_back function will just add another concatenatiad) sito the v_chat

variable. The function realtime_str() is a generic function that can be used to listen to realtime
information streaming into Quantlab. It takes three arguments; the iqc identifier, the field identifier,

and the name of the feed.

We can now attach both the send and receive functions to two tables in the user interface and we can
start chatting.

Pages0



{H igc_chat30.qlw - Quantlab
File Edt Wiew Insert Table Tools ‘Window Help

e EE N e o ] e e e

il Send

—send - 1
user IRandolph Iv

Mmessage I

—Recalc

Feecalc I

i Chat

[23:04:38] Randalph IV I'm onling! were are you’?
[23:05:29] Clausz J: I'm going to bed...
[223:06:03] Heinz S: I'm zitting up for & bit of programming - anpone?

| Tab [&] Tab |
m— [ [ 4

6.4 Example of feeding some markabaker corp spreads

We willcreate a minworkspace with a table where the market maker can do manual input for three
corporate bond spreads. Then we will create a user workspace that will price these bonds in terms of
a base curve plus the spread published by the market maker.

vector(string) v_instr_name = [[CORP_BBB_1Y''CORP_BBB_5Y''CORP_BBB_10Y';
out void publish_spread(out vector(number) v_spread) {

for(i:0,v_size(v_spread) -1)

igc_publish('IQC', v_instr_name(i], ['mid", str([v_spread[i]]));

Above is the ade for the publishing part of the exercisé&/e place our three instrument names in a
3t 20t GFINRARFIOfSP® ¢KSYy ¢S ONBIFGS || FdzyOdAz2y 6AGK
is attached to a table the v_spread vector will be available fortibguhe user.

Pagebl



The loop will for each spread in the vector publish an igc identifier and for each of these identifiers a
mid quote.

In the second part we create some subscription code that will use the published spreads.

out vector(point_number) yields(cu rve_name base_c, date d, quote_side q){
vector(number) v_maturity = [1,5,10];
fit_result f = bootstrap(curve(base_c, d, q));
vector(number) zero_yields = f.zero_rate(0,v_maturity,RT_CONT);

vector(number) S = str_to_number(realtime_str(v_instr_name,
'mid','1QC"))/10000;

return point(v_maturity,(zero_yields + s)*100) ;

We have a function that will return a vector of points that we can attach to a graplinput to our
function we will allow the user tehoose the base curve to price the bonds from. We will also allow
the user to choose for which date to take the market quotes for the base curve as well as the quote
side.

The base curve will be stripped from coupons to a zero coupon curve before wefaspriting. We
have chosen the bootstrap method. From the fitted curve we extract the zero yields for the maturities
of our corporate bonds.

We then subscribe to the published corporate bond spreads using the realtime_str() function and
divide the basigoints with 10000.

It is now easy to return the three bonds zero yields as the sum of the base curve and the spreads.
[ SGQa 221 G GKS @g2NjaLl OS gKSy 6S KIGS Fidl OKS

Pageb2



tH test_sub_igs - Quantlab
File Edit Wiew Insert Graph Tools ‘window Help

iy 5 AT P ot N e

re...  __ ®=
"Recalc v_zpread

100.00
110.00

Corp yields
yields - 1 |l Corp yields incl spread|
base_c IEURSWHP -.—l TH! CORP_BEB 10
d Itodav = I
afwmd =]
(]
—Reacal 527
CORFP_BBE 1%
B0 ¢
0.00 200 4.00 .00 800 10.00

I Test CDdE |
==

For every time the market maker updates any of the spreads in the spread vector in his Quantlab
workspace, the pricing will immediately be pushed to all other users listening to these iqc identifiers.

Pageb3



7 hdzil lmd2G6f S& | yR 3INJ LKA OA

Quantlab is designed fdboth the developer and the endser of the analytics. To display analytics in

a pedagogic yet comprehensive way, Quantlab have three different "display objects" to choose from.
The expressions can be displayed in a graphical window and/or in a tabte.drkawo table types, a
generatpurpose table where any scalar, vector or matrix can be displayed and a gpagiate table

for instrument display.

7.1 General purpose table

A generalpurpose table can be created on the menu Insert | Table or by presting. Chis table type
will display any scalar, vector or matrix expression. Multiple expressions can be attached to the table.

7.1.1 Attaching an expression to a table

Let's look at a simple example. Open a new workspace by the menu File | New workspaeseand
an expression window by the menu Insert | Expression. Then type the following:

/I Example expression to paste in a general table
out series  <number>(number)my_expr(number n) = series (i:0,10;i*);

Compile this expression using the menu Expresgfoompile, or press F7. If you have the workspace
browser open (View | Workspace browser) then you will see a + sign to the left of the Expression
window. Click the + sign and you will see the symbol for the function my_expr. Now, insert a table
using tre menu Insert | Table. Drag the expression my_expr from the workspace browser (pressing
the left mouse button) and drop it on the table.

The result should now look something like this.

Quantlab [E=E{E= ===
File Edit “iew Insert Expr Debug Tools “Window Help
® ®
Woarkspace [T Table =
E| Expression iy _expr- 1 Tny_expr 1
L E rny_expr T -
- Table
Recal To |
Recalc =l
E| Bxpression E —
out series<nunber:inumberiny_szprinumber n) = series( i 0, 10; di%*i }; ’—‘
,_
,_
Lnl, Col22 |my |— MU

Example workspace with the my_expr function

You can now see the atthed expression "my_expmrl" in the workspace browser by clicking the +
sign to the left of the table symbol. The number behind the expression name will help in keeping track
of which instance of the expression you are working with.

Pageb4



The table will now d@ay an input box for the user to input a value for the parameter n. A table will
recalculate when the return key is pressed, or by pressing the "Recalc" button. If the table includes any
real time data in the expression the table will update on any chdruga.

When attaching expressions to tables or graphs Quantlab always creategjengoated controls
which correspond to the types of the parameters. If you want several parameters to be determined by
the same control you can use the Parameters Optidakd, as described in4.4

Pageb5



7.1.2 Table options and formatting

Parameter canvas

Clicking on the close x, in the upper right hand corner, hides the parameter cdispiesyed in the

table. The same function will show by right clicking on the canvas and using the menu choice Hide
Parameters.

Formatting the table

By right clicking on the header a number of formatting options are available:

Format Attachment | Change colour settings and border style

Color aml border

Format Attachment | Change font size and style

Font

Format Attachment | Change the number formatting of the selected column

Number

Format Attachment | Change the horizontal alignment of any text in the cells

Text alignment

Auto format Let the font be dependent on the value in the cell (only for numer
attachments). Se&.1.4

Column order Change order of presentation when multiple functions are used

Minimal frames Will display table with minimal frame

Display name Change the header name of the column. Dynamic header variz

reflecting the current parameter setting care inserted by double
clicking on the parameter.

Rename table Change the name of the table

Holiday Set a holiday calendar for the table. For expressions having date rz
the relevant holidays will be suppressed in the table.

Hide/show parameters | Switt the parameter view on and off

Duplicate Will make a copy of the table.

By right clicking on a specific cell, or multiple selections of cells, the same formatting options are
available by choosing Format Cell. Cell(s) are available for formattingtaaelection turns black.
Changing attachment order

The attachment order can also be changed using drag and drop of columns. Put the curser on a column
header, press Ctrl and use the left mod=méton to drag the column to the desired location.
Mergingparameters

The parameters that are needed in order to evaluate functions attached to tables can be merged to
common controls. This is done in the same way as for graphg,.3ge

Pageb6



Transposing the table

The table can be transposed so that columns and rows change places. Right click on the table and
choose Transpose.

7.1.3 Vector parameters in general tables

When several input values of the same type are needed for a catmuiats convenient to use a vector
parameter. When attaching an expression containing one or several vector parameters they will show
up within the table. By clicking the right moubatton on the column head it is possible to set or
change the number afows in the vector, by choosing "Input parameters|Set rows". If you know that
all input vectors will be of the same length, you may use the choice "Set entire row". Note that
sometimes it may be necessary to check the size of the input vectors in the code

Vector parameters can be merged within a table as other parameters. They appear in the Parameters
options dialog in a separate attachment symbol.

For some examples of how to use input parameters, see the case stu@i€saimi 8.7.

7.1.4 Automatic text formatting

In financial applications it is often useful to format the text (or tars) in a table depending on the
values shown, or other parameters. By riglitking the column header of an attachment you can
choose Autoformat. This gives the possibility to set up simple rules that changes the font and/or
background colour dependiran the number in each cell.

For more complicated situations there is a possibility to set the font and background colour from the
code. The background colour can also be transient in order to flag for a change. For this purpose we
have created the objedext_rgb that can be attached to a table. This object is created by calling the
function with the same name:

text rgb (text , [fg], [bg], [transient_bg 1])

where text is the text as a string, fg is the font (foreground) colour, bg is the backround colour and
transient_bg is a logical parameter that makes the background colour transient iTtheecolours are
given as RGBiplets and can easily be defineding the function rgb(), for example:

rgb(255,0,0) (Reg

rgb(0,255,0) (Green)
rgb(0,0,255) (Blue)
rgh(0,0,0) (Black

For an extensive example of the use of atdanatting, seeB.13

7.2 The instrument table

Instrument tables are possible to use in Quantlab 3.0 but are not recommended as the effect of an
instrument table can be obtained through an ordinary table.

Pageb7



The instrument table is specially created for diging lists of instruments and other input/output that
refers to these instruments. The instrument table is itself defined by a vector of instruments and a date
for which any evaluation should be done. Any function or method that can be used on an iestrum
can then be displayed in the table. The user can for certain settings change the instrument vector and
; evaluation date. There is also the possibility to define the instrument
~Date vector through a function, see below.

= Today
" Parameter

;Fd = 721 Astandard instrument table

;:’m‘a VM:DI—;I We will describe the standard instrument table using an example: We
want to display a list of bonds and their current prices and durations.

r~ Instrument

" From curve

| =] Insert a new instrument table from the menu Insert | Instrument table.A
# Fombst "wizard" will ask for which date and whialstruments to initially display.
Here is shown the left side of this dialog.

In the date option, only the parameter choice will give the user of the
table a possibility to change the date again. The other two options will fix
cex | Remae | men || the date for the table permaently.

Cacel | Either you can let the quote side be a parameter for the user to change,
or you can use the fix value (which is defaulted to the value under Tools

Options.

If your Quantlab already is prepared with curves, choosing a complete curve is obviousgieahv
If not, instruments can be chosen from the list of available instruments.

Tip! If you have no curves defined in your Quantlab database, it is easily done from the Database tool
that was shipped with your Quantlab installation. See separate manual for further instructions.

The table is now created with your initial choice of datg énstrument selection. User controls have
also been added to the table. Next step will be to add our needed informationitthe instruments
chosen.

Now to some simple programmitigWe will need to create an expression having three instrument
methods inorder to get the name, price, and duration. For more functions see the function index.

/I Example of some functions that apply for instruments

out vector  (instrument_name) N ame ( vector  (instrument) i) = i.name();
out vector  (number) D irty_price ( vector (ins trument) i) = i.dirty_price();
outvector  (number) D wuration ( vector (instrument) i) = i.mac_dur();

Note! Any code written to display functions in an instrument table must have the vector of instrument
as the last argument.

1 See chapteB for more information about programming details. In this example we have createttions that
take a vector of instruments as input argument. Since the instrument table at creation uses an instrument vector
as base, the methods will be evaluated for all instruments in the vector.

Pageb8



Compile (press F7) and confithat the expressions appear in the workspace browser. Now it is simple
to draganddrop the instrument information to the instrument table. The result should look
something like in the following picture.

filli Instrument table E =100 =]
—inisty M ame Dirt_l,l_priu:el Duratiu:un|
d |2uuz-u3-w =] STEO203 9391 noz2
i ISEGO'-.-'T ;I STROZ04 9961 IR ]
STRO20R 93.89 =8
_tadfy | | | 570209 57,80 0,532
G STRO212 a6.72 077
] | SGE1033 114,76 1.06
SGE1042 100.79 179
SGE1035 10263 274
SGEE1044 96.5h 376
SGBE1037 116.33 448
SGE1040 110.65 502
SGE1043 97 B3 594
SGE1045 a7.40 i.oa
SGE1041 114.21 a8

Example of an instrument table with three colunfsisowing Swedish government bills and bonds)

One of the special features of the instrument table is that it will automatically evaluate any expression
over all the instruments in the chosen vector. A generaipose table cannot do this.

7.2.2 Formatting the irstrument table
By right clicking on the header a number of formatting options are available:

Sort Will sort the table according to the chosen column

Format Attachment | Change colour settings and border style

Color and border

Format Attachment | Change font size and style

Font

Format Attachment | Change the number formatting of the selected column

Number

Format Attachment | Change the horizontal alignment of any text in the cells

Text alignment

Auto format Let the font be dependent on the value time cell (only for numerica
attachments)

Column order Change order of presentation when multiple functions are used

Minimal frames Will display table with minimal frame

Display name Change the header name of the column. Dynamic header vari

reflecting the current parameter setting can be inserted by dou
clicking on the parameter.

Pageb9



Rename table Change the name of the table

Holiday Set a holiday calendar for the table. For expressions having date r;
the relevant holidays will bsuppressed in the table.

Hide/show parameters | Switch the parameter view on and off

Duplicate Will make a copy of the table.

By right clicking on a specific cell, or multiple selections of cells, the corresponding formatting options
are available bghoosing Format Cell. You can select multiple columns or cells by using the left mouse
button. Cells or column headers are available for formatting when the selection turns black.

The attachment order can also be changed using drag and drop of columttise lButser on a column
header, press Ctrl and use the left motsnéton to drag the column to the desired location.

Note! The parameters that are needed in order to evaluate functions attached to tables can be merged
to common controls. This is donethe same way as for graphs, se&.2

7.2.3 Creating instrument tables using an instrument vector function

It is possible to create instrument tables based on a vectanstrument that is defined through a
function. If you write a function returning a vector of instruments, for example,

out vector  (instrument) my_v_i(curve_name c_n, date d){
return  curve(c_n, d).instruments();
}

this function will be possible to seleitt the right hand side of the ModHglialog of the instrument
table. Then the instrument table will iterate over the vector that this function delivers.

The instrument vector function will always be calculated before any other function is evaluated in the

table, see7.5.3 And the evaluation of an instance of this function causes the evaluation of all other
functions in the instrument table, as they are dependant on the instrument vector. This is a typical

case when dealing with retime data. Itthe date dinthefunctp | 6 2 @S A& OK2aSy (2 ¢
then by default the instrument vector will be updated with réi@he updates on the quotes of the
instruments. Each time any update comes to any instrument the whole vector will be calculated and

then all other functims in the instrument table. Thus the whole table is connected to real time updates

only by the instrument vector. No other explicit reaahe update is necessary.

This type of instrument table can of course be used when you want to do a more sophisfilteki)
of the instruments than just using curves and dates.

7.3 The graph window

For many users the graph window is the most popular way to analyse financial data. In order for a
graph to reveal as much information as possible in a limited space a numbped@#l features have
been added to Quantlab's graphing capabilities.

To create a new graph use the menu Insert | Graph or use the3dtdmmand.

Pagec0



7.3.1 An example of a time series graph

In order to list features of the graph component let's go through a sirapéample first. We want to
plot two time series on the right and left hanebxis.

First create the expression having three user parameters instrument name, from date and to date:

out series  <date>(number) my_series(instrument_name my_instr, date from_date, date
to_date){

return series (d : from_date, to_date; instrument(my_instr,d). yield ());
}

Since we use parameters in the my_series function, we carseehis expression for many instances
of the same expression. Compile the expression and drag two tesasf the same expression to the
same graph. The graph window should look like this.

(2] Graph e IR

Example of graph with two instances of the mySeries expression attached

As we have not yet given the controls any parameter values the graph is still empty. Befdegtwe s
use the graph we will use some of the more common graph formatting features available.

7.3.2 An example of how to merge parameters to common controls

In this example we will always want to have the same from and to date for both instruments, so next
stepwill be to use the merge control function.

You find the dialog by right clicking on the canvas and choosing "Parameter options" or through the
menu Graph | Parameter options.

On the left part of the dialog we find our functions with their parameters,fanright hand side all the
auto-generated controls are shown. In the top of the right panel there is an empty group for common
controls.

1. Start by choosing the first instance of the my_series function. The available parameters appear
in the left list, if yai click on the + sign to the left of the expression synthdlere we want to
merge the date parameters from the two functions.

Page6l



Parameters options

Furctions: All Cartrals:
EI@ my_senes - 1 T8 Comman Parameters
my_inste @ my_series - 1
@il | from_dat Bl- I my_series - 2
@ ta_date

F I my_series - 2

Merge
[ fesore |

2. Grab the from_date parameter and drop it in the right hand list panel on the Common

Parameters group. This creates a new ocoom Date control and removes the corresponding
auto-generated control further below. Give the common control a descriptive name, for
example "From date". In the same fashion, drag the to_date to the right and rename it.

In the function list on the left ak the + sign to the left of the second instance of the function
mySeries. This function's parameters are now displayed below.

Dragand-drop the second function's fromDate and toDate on the corresponding common
controls on the right.

You have now merged éhdate controls for this graph. If correctly done, it should look
something like in the picture below.

Parameters opticns

S

Functions:

El E my_series - 1

oL my_irtr

@ from_date - From date
@ to_date - To date

- E my_series - 2

..... rr_itstr

@ frorn_date - From date
to_date - To date

Tookip for parameter to_date

Ewpand | Collapse

BLEET
| |

All Controls:

=T Common Parameters

E@ From date
@ my_zernies - 1 from_date

- B [

@ ry_senies - 10 to_date
@ my_senies - 2 1 ho_date
- & my_series - 1
- X my_sefies - 2

Delete ‘ MHew |

Expand | Eollapse|

ok | Cancel

Example of merging date controls together

So how does the graph look like now, having chosen some instruments and dates to display?

Page62



Graph | =8|
Common parameters

From date [2007-12-04 -
Todoe o] B my_series - 1
= S B my_series - 2
my_series - 1
my_inst [SGE1041 -
|

0.050

mry_series - 2
mynsw [DEI13E2E= o

Recale

0.040

0.030

0.020

2008-01-14 2008-03-24 2008-06-02 2008-08-11

Example of graphaving common date controls

The common date controls now drive both my_series functions. "Today" is the key word used in a date
control to always getting today's date after you save an@pen a workspace. Setting today's date
also implies getting quotes real time if connected to a real time source.

Tip! You can use the merge functionality in order to give the parameter control adefered label
text, other than the function name that is the default. In this case you only merge one parameter to
ead control.

b2¢> 6S ¢2dzZ R tA1S G2 KIFIGS | Y2 NbE dRSzcHoaddkth& A 9 S
graph to get the dialogue Attachment Options for Graph. Choose the Legend tab and delete the default
legend text my_seriesl. Then doublelick at the myinstr parameter to the right. It appears within

{} signs.

r .|
Attachment options for Graph Lé]
Attachments Legend l Format] Mizc ]
e X my_series -1 Mame: Parameters
e B mp_sefies - 2 my_sefies - 1 it
Diisol ) from_date
isplay name: to,_date

{my_istr)]

Editing the legend text

Then do the same with my_serie8. The effect is that the legend text will be dependant of the choice
of instrument.

Page63



Graph [E=R[E=E =)
Commen parsmeters

From cate (00712040 <]
L B 5GB1041
sl oy | 0,050 B DE113525-
my_sesies - 1
my_nstr [SGBIGa 2]

my_sesies -2
my_insw [DE113525= - 0.040
|

Recake

0.030

The graph with edited legend text.

Of course, yo can also type a constant string into the same dialogue, or combine strings with
parameters.

Tip! It is possible to merge parameters on a separate canvas/window that will contain all graphs and
GFofSaQ LI NI YSGSNRE | This optibKcarRbe fo@nd unded\ie® @ SHbW @b G I 6
LI N} YSGSNE 2NJ oe LINBaaiAy3a !'fd bpd C2NI Y2NB 2y O2
745 02dzi AOYSNBNYAYLI NEHVYSEE D

7.3.3 Using the graph mode toolbar

When a graph window is active the graph mode toolbar can be found under menu View | Graph mode
or by pressing Alt + 5.

e £
Qe LR L =] &l xif.. [E].2

The buttons guide in which way the mouse interacts with the graph. By default, haololimg the left
mouse button over the graph will move the centre left and right.

Zoom in the graph by switching to the magnifying glass and creating an area to zoom in on by holding
down the left mouse button.

Enable and disable zooming functions for the #fd right yaxis by depressing the L and R button.
To display a value cursor in the graph, enable the line buttoithis will showyand xaxis values in
the legend box while you move the value cursor left and right in the graph. You can insert salteza
cursors by clicking this button repeatedly. To remove the value cursors, use the button marked with |

To insert a horizontal line use the button with the syml4oiand to remove those lines use the button
with the symbol%".

When changing any pameters used by the graph or when updates come from the real time feed an
auto-zoom function is available. With the autmom turned on it will refocus the graph on every

update that changes position or size of the displayed graphics. It is possibla tortdhe autezoom
for each axis separately by pressing down the relevant axis button with double arrows.

Further autezoom features admit the user to always show thaxis at the bottom of the graph rather
than at zero, and always show zero level onlgfeand right yaxis when rezooming. (The last three
buttons on the lower row of the control these features.)

Continuing our example from.3.1and usingthefol g Ay 3 F2NX I GliAy 3 2LIGA2ya X

Page64



1. Right click on the left axis to get the dialogue Graph properties and choose Multiply by 100 to
the right in the Character pane. Also, choose 2 digits for decimal places and % as symbol. Press
the Home button on the keyboard tegauto-scale.

2. Right click on the left axis to get the dialogue Graph properties and tilt the dates by choosing
a 30 degrees slant.

3. Right click on the background of the graph window and choose Graph properties | Titles. Write
appropriate titles for the gaph and the axis. After pressing OK, the titles can be dragged and
dropped at the ends of the axis.

4. Right click on the background of the graph window and choose Graph properties | Hariday
check that Hide weekends are clicked. Then you can also click at Sweden and Germany (for
this example where we have a Swedish and a German bond) in order to hide all days that are
holidays in any of the two countries.

Xe2dz gAff 3IAShthisond NI LIK aAYAf NI G2

Graph [E=E (o>
Gommon parameters

From date [2007-12-04 -
Todan [emr——] | | Y4
B 5GB1041
W DE113525=

my_sesies - 1
my_instr [ SGB1041 -

6.00 %

YYield Graph

500%
my_sesies - 2
my_instr [ DE113528= -
|

Recak

400%

3.00%

200%

Note! Any residual holes remaining in the graph, after proper holiday calendar(s) are chosen, are due
to missing data in the historical database. Use your data cleansing tools to repair this missing data. See
manual for the Database tool févelp on finding missing data.

7.3.4 Graph formatting options
Right click on data series line (the graph) to:

Change the Orderby selecting a choice in the safenu you can change the order for how the graphs
are displayed if you have attached several expressions to the same graph window. The legend text that
corresponds to the last painted graph (in the front) is the lastiortbe legend text box.

Snap labelg; see special chapter about creating labels (not valid for time series graphs)

Linear regressiom to display a linear regression line for the time series

Page65



Copyg copy the underlying data from the selected graph makimyétilable, for example, for an Excel

spreadsheet.

Copy legend; copy the legend text

Propertiescg see table below

Properties detail

Functionality | Description
Legend Automatic In the display name text box free legend text can be written.
legend parameters used in the graph can be attached to the legen
showing double clicking on the parameter in parameters list. A param
current value| is inserted using {} brackets.
of parameters Example: MyGraph showing {myirisfrom date {fromDate} to
{toDate}
Format Graph type Allows for line, column or points.
Point type Options include plus (+), diamonid ), circle (o), squareA() filled
or not filled.
Color, font,| For vector of lines, a colour scheme canské
width
Misc Right/left axis | Choose to place the graph on the right or lefixis
Regression Change the colour and width of the regression line
Optimise Will give a smoother appearance when zooming in and out.

Right clicking in the graph spa@yveals:

Attach/Detach Attach and detach any expression from the graph
Show/hide If many curves are attached to one graph it is possible to hide of
curves more curves temporarily without detaching them from the gra

window.

Graph properties

Holiday

To choose which holiday calendars that the graph should handle
market is chosen, the dates set as holidays will not show in the g
Multiple choices are valid. Also weekends can be turned on/off.

Titles

To edit the main graph title, thg-axis and »axis title. Font, size, an
colour can also be set.

Scale

As default, the scaling is automatic and will follow the zooming.
also possible to manually set the min and max scaling for each ¢
axis and also lock the scale.

Misc

To tange the column width when displaying bar chart style.

Changing font, size, and colour of the legend. Formatting the
cursor(s) settings.

Page66



Axis Change the date format, character display, line format for the chg
axis. Same dialog will show when double clicking directly on any
(see description below).

Parameter
options

Display the merge function dialog (see separate description)

Minimal frames

Will minimize the window frame of the graph (or table).

Rename To rename the current graph

Show/Hide To show and hide the parameter canvas

parameters

Duplicate Will create a copy of the whole graph including parameters

format settings. Areference to the copy will also appear in t
workspace browser.

Right or double clicking on the right or leftaxis and axis:

Text angle

Edit the slant of the text

Font, size, anc
colour

Change font, size, and colour of the x eaxys

Linewidth

Change the line thickness of the x eaxis

Symbol

Place a symbol or other text behind the numbers (&8Xx %or '5 Kr")

Date format

Use default setting or format display using an interactive wizard

Tip! By pressing thdéaome buttonon your leyboard the graph will automatically fit and centre the
graph. This feature can be set on automatic by pressing the buttons in the graph toolbar. Holding down
the shift button and the left mouse buttowill zoom the graph when the mouse is moved.

7.3.5 Scattergraphs

For graphs where data don't come in the form of a series the point function is useful. This function
returns a point object, which consists of theaxd ycoordinate for a point in a graph. A vector of such
object can be used for producing a seatgraph. For example, to plot a square function on some non
equidistant xvalues you may use the following code:

out vector (point_number ) my_scatter_graph  (){
vector (number) x = [0, 05, 1, 2, 5

10];

vector (number) y = x"2;
return  point (X, Y);

Page67



=101 %]

100 4 B my_scafter_graph - 1

80 1

BO 1

a0 1

20 1

.00 2.00 4.00 5.00 2.00 10.00

Result of the scatter graph example above

This function can be attached to a graph window and can then be formatted to show just the points or
with lines in between, as describedrB.4

7.3.6 Plots using matrices or series(vector(number))
It is possible to plot a matrix of numbers or a matrix of points. Quantlab will interpret the matrix as a
collection of column vectors that will be plotted as usual vectors.

Likewisea series of vector of numbers will be interpreted as a collection of series which each will be
plotted.

In order to distinguish between the columns in the matrix or the different series you can use the start
and end colouring in the Properties dialog oé thttached expression.

Similar plots can be created using a series with two range variable3,&&8

7.3.7 Column graphs

To produce graphs consisting of columns, makk data series (the graph) and click the right mouse
button. Select Properties and select the tab Format. Here you can select the graph type column and
set the width of the columns.

7.3.8 Bar charts (hio etc)

Often, financial data are displayed in the formbafrs showing for example higbw or openclose
prices. This can be done in Quantlab by usingptieobject. It is simply a vector of two numbers that,
when used in graphs, it is displayed as a bar starting at the first number and ending at the second. F
instance, the following expressions can be used for creating a bar chart with bid and ask yields.

out number my_yield(instrument_name i_n, date d, quote_side q) =
instrument(i_n, d, q).yield();

out series  <date>(pair) my_high_low(instrument_name i_ n, date from, date to){

return series (d: from, to;
pair(my_yield(i_n, d, 'bid"), my_yield(i_n, d, ‘ask)));
}

If the second function is attached to a graph, it will show a typical bar chart which can be formatted
with the desired bar width etc.

Page68



In the formatting dialog you can choose between line and column. In the first case the width will be
constant, in the second case it will change when zooming in the graph window.

In order to show the dates on the grid it can be necessary to right click on thgroand of the graph
and choose Graph Properties | Axisand@fi A O1 &2 KSy | LILIX A Ol éakisSornkak & LI | &
pane. Also, choose the tab Misc and click On grid.

To construct a chart with several values for each date, for instance-dpseand highlow, you can
simply attach several functions using pair objects. Of course, it can also be combined with a normal
graph if the number of values is odd.

Pairs can also be combined with point objects. Then the second value in the point objeetavibir
object.

7.3.9 Creating labels

A common case where the point function is used is when producing various kinds of yield curves. Then
it is useful to show labels telling the names of the bonds. The following is an example of how to produce
a yield curve graph with the instrument names.

out vector (point_date) yield_curve(curve_name c_n, date d){
curve ¢ = curve(c_n, d);
vector (date) maturities = c.instruments().maturity();
vector (number) yields = c.instruments().yield()*100;
return  point(maturities, yields);

}

out vector(label_date) yield_curve_labels(curve_name c_n, date d){
curve ¢ = curve(c_n, d);
return  label(c.instruments().maturity(), c.instruments().name());

}

First, attach the yield _curve function to a graph window and then the yield_curve_labels function.
Then you get a quation which function to associate this labels to. If you choose to attach it to the first
function you will get a yield curve with labels connected to each point.

If the labels cover the graph you can drag and drop them where you want. To get them nigihalo
position you can select the graph, rigtitck on the mouse and choose Snap labels.

Attention! In this example the curve is constructed twice for the sake of clarity. If there are frequent
real time updates and many curves it may be necessaryoi@ stalculated data in global variables,
see3d.5and7.5.2

Page69



=10 x|
DSL7.00 24|
50 1
—  [psLe0oi
~ ~|DSLE.00 04
451 -~ __—{psL40008
~DsSL7.0007
.. |psLs.oo00s
an L . -{DSL5.0005]
[DKKDepoOM| 1DSL7.0004
—DEL5.00 03]
-IDKKDepolY|
35 1 F——DFEDep o]
oy — Ep0
._"D?’«ESE u:lg;
DEFLepa
30 . . . . . "
29 20031112 2007-11-07 2011-11-04 2015-10-28 2019-08-28 2023-06-28

Exampleof a Danish yield curve with labels attached to each point.

Tip! If you only want the labels to appear when holding the curser over a point, you can select the
graph, rightclick on the mouse and choose Properties. Then go to the format tab antickishow in

the Label box. All labels disappear but each label text will be shown in the yellow box that appears
when holding the cursor on a point.

In the example above, the labels where attached to the graph function, another possibility that could
be usetll in some cases, for example bar charts, is to attach the labels teakis xFor example, given
the following code

out my graph () =1[3, 5, 4]
out my labels () =['a ,' b ,'c]

you can produce labels on theaxis by choosing that option when attachitig label function to the
graph. If you want bar charts you select the graph and click the right rdouiten to get the
Properties dialog. There you select Show attachment as Column. Note that in order to associate the
labels to the »axis, the graph furiin must consist of only a vector of number rather than a vector of
points.

It might be necessary to zoom in or out in order to view the labels correctly.

Bar chart fo i)
&
Recsle

Recse

o

[ . I .

A simple bar chart.

Page/0



7.4 Handling parameters

7.4.1 Simple parameter controls

Below follows a list of contr@hoices that can be used for common controls where several parameters
are merged into one control.

Control Used for common instances of: | Example of QLang code
String edit String parameters (exstring') MyFunc(string myX)
Number edit Number parametergex. 12.4) MyFunc(number myX)

Instrument control

Instruments (ex. SGB1044)

MyFunc(instrument_name myX)

Curve list

Curves (ex. EURGOVT)

MyFunc(curve_name myX)

Date control

Dates (ex. 20022-02)

MyFunc(date myX)

Day count list

Day count conventions (ex.
ACT/360)

MyFunc(day_count_method myX)

Rate type list

Rate type basis (ex. effective)

MyFunc(rate_type myX)

Quote side list

Quote side choices (ex. Bid)

MyFunc(quote_side myX)

Asset swap list

Asset swap calc types (€
par_value)

MyFunc(asset_swap_type myX)

7.4.2 The instrument control
The instrument control leads to an extensive dialog identical to the one in DatabaseTool. The first

St SYSyi

Ay

iKS RNRL] R2gy

fAad o02E A& g

&a G(KS

insrument dialog. In this dialog you have several possibilities for searching the instrument. You can
also view more extended information about a particular instrument by clicking the Info button in the

top right corner.

Tip 1! To find an instrument, wré the beginning of the name in the index tab. The search function
immediately goes to the first instrument that matches what you have written. To select the desired
instrument, you can use the up and down arrows, and the press Enter.

All instruments thahave been chosen are saved in the drop down list box.

Tip 2!After a while the number of entries in the drop down list box can be quite long. You can decrease
it by pressing the delete button repeatedly, after having chosen an instrument in the list.

7.4.3 The curve control

The curve control resembles the instrument control as it is a list with one special entry ("Select curve
IAPAYI GKS LlraaArAoAfAade G2 fAYAQ
a userdefined curve typend in the dialog you can select a curve type that will be used in the list.

iaLSXbo

Pagerl

0KS ydzyao



7.4.4 Creating common controls using Parameters Options

Common controls in graphs and tables can be used for input to several parameters by the use of
mergingin the Parameters Option dialog.

The dialog has to list panes, each showing the same information but in two different ways:
To the lefthere is a tree showing each attachment (instance of function) with its parameters as leaves.

To the right there isa tree with groups of controls (common controls and agmerated controls)
with the controls as branches and all parameters associated to the controls as leaves.

See the example in sectiagn3.2where the concept of merging is explained.

In the Parameters dialog it is also possible to set the order of common controls by using the right
mouse button in the list to the right. The group of common controls is alwaysgeathee attachment
controls, however.

7.4.5 Tab parameters

It is common to organize multiple graphs and tables analysing similar things in the same Tab. Many
times it is convenient to have common controls that guide all graphs and tables within the same tab.

Thiscan be achieved in the specific tab parameter window, which can be moved around and docked

independently. The format of this window is specific to each tab.

To active the tab parameter window use View | Tab parameters, or Alt+5.

At first all parameter camols for every graph and table belonging to the tab will be listed in the
window. It is now possible to merge desired controls into common ones. By right clicking on the tab
parameter window and selecting parameter options, the merge dialog appears.i¢Tthie same
merge functionality available for a single graph or table, as explained in s@&diagh)

In an example we wish to merge all curve controls and datéralsninto two common ones for the
entire tab. Adding two common controls and dragging and dropping the individual function
parameters into the common ones will give a workspace having overriding parameters in a separate
window.

Parameters £l | Spreads _ =10l x|

-~ Cornenen parametars ———————— -~ inatr Hame | Matwity | ield|
Cunse.,, t _.I d I2L‘I[IE~UG-28 vI SEEDepalM 2002.08-29 4.250
Drate c... = ¢ [sexpEro = SERDepolw’  2002-03.06 4 285

_ J -~ I _:] SEKDepolM 20020330 4305
~ Racale 3l _Modfy | | |sEkDepor 20021030 435
Recsle sll SEEDepoiM 20021129 4,365

—Racalc

Racale all | SEKDepoiM 20030228 4415
SEKDepodd 20030530  4.495

SEEDepoly 20030829 4,585

Spread to Govt

— field_dew_Swep_Graph - 1

< ESECM - | 12 1 B vield_dev_Swp_Graph -1 =
d ps -

2002-02-22

Recal: all E

Pager2



Exampleg upper leftwinew¢2 ¥ 02 YY2y GF o6 LI NF YSGSNBR 20SNNARAYy3I S| OK

Using the common tab parameter window it is possible to minimize the unnecessary space used by
SFOK 6AYR26Q& LI NFYSGSNI OFy@lFad ¢ KA &l taschdnde | f &2
settings for all analysis contained in a tab.

Parameters =10] x|
— CORnTNON paraneters | Hame h atimity l‘I"'E:h:ll
SUrE . |5E5PI _:__I I SPIES 2003-0%17 4,695
Crati &0 Izggz.gﬁ_zy ;I | SF|1E1 EUDJ'DB‘-I 5 4.9’?5
! SPIT70 2005-06-15 5.055
—Recalc all 1 SPITA 2006-06-21 5.165
Recalc all E | 1] 5Pz 2007-06-20 5.265
L 2003-04-20 5410
bps
|l Spread SESFIvs SWAF @ 2002-08-27
15 e
— "-'-H-F'-FF
.-""-#f
;—*"#f
10 P T |
bt #
o
/ |
1] ' ' ' '
0031112 2005-06-21 2007-0-22 2005-08-27 21 l
I
Same example as above but now

controls hidden (and the graphbel formatted to dynamically show
the chosen data).

In the Parameters dialog it is also possible to set the order of controls and attachments. In the list of
attachments to the left, click the right mouse button on an attachment and select mowe omve

down. To change the order of controls within an attachment, select the corresponding parameter and
use the right mouse button. You can also change the order of common controls by using the right
mouse button in the list to the right. The group @ihemon controls is always above the attachment
controls, however.

Note! It is advisable not to show tab parameters and specific parameters for the views at the same
time, as the tab parameters override the specific parameters but not the other way round.

7.4.6 Writing tool tips for parameters

For each control it is possible to write a short help text, a tool tip, that will show up when the cursor is
above the corresponding parameter. Open the Parameters Option dialog and select any parameter
you want to desribe, write the tool tip in the text box below, and click OK.

Page’3



There are some exceptions to the tooltip possibility described above: Currently tooltips cannot be
written for vector parameters that appear within a table. For some controls, such as &ypatdist,
Quantlab has its buiin tooltips that cannot be overridden.

7.4.7 User defined lists (fill functions)

In many cases it is useful to be able to create a user defined list. For example, you could define a list
that gives the user various options fdret calculations of a yield curve, or you could put limitations on
how many instruments that should be shown in an instrument list.

We will describe this feature using two examples. In the first example, we will produce a completely
new list. In this casgou create a function that takes a string as input parameter which shows up as an
edit box in the user interface. By attaching a function returning a vector of strings to this edit box you
will create a list containing the elements in the vector. Heréésdode:

out number calculations(string method){
number answer;
if (method == 'bootstrap’ ){

/I use bootstrap
/I answer = something;

elseif (method == 'tanggaard" ){
/I use Tanggaard's model
/I answer = something;

}
else {
[l use bootstrap
/I answer = something;
}
return  answer;
}
out vector (string) method_list() = [' bootstrap’ , 'tanggaard J;

Now, proceed as follows:

- First, attach the first function, called calculations, to a table.

- Then drag the second function and drop it on the datiix that corresponds to the method
parameter of the first function, as illustrated by the red arrow below.

[ :| Workspace

. il Table
£3-(E] Expression
P Ecalculatinns 11— = | calculati..

e Y. calculations
e B methiod_list
- Table

thod | X method_list

Recalc
’7 Recalc |

Drag the second function and drop it on the edit box as the red arrow indicates.

Having done this, and pressed Recalc, the text box is tranefbto a list containing the two entries
given by the vector, see the illustration below.

Pager4



Workspace
El - Expressian
{ E calculations

imi Table

—ealeulations - 1 ———————== | calculati...
rnethod Im - I
—Recalc jtanggaard l:

Recalc |

X method_list
I I Table

The text box is transformed to a list.

Our second example shows how to construct a list of instruments given a curve name. The first function
calculates the yieldf an instrument, given a curve fit.

out number test(instrument_name i_n, date d, curve_name c_n){
curve ¢ = curve(c_n, d);
fit_result f_r = bootstrap(c);
return  instrument(i_n, d).yield();

}

The second function gives a list of instrument names. (Nlodé we have set the quote side to an
empty string, which will enforce the system to not look for a quote in the database or in thémesal
source. We have done this, as we are only interested in the names of the instruments.)

out vector (instrument_name) instrument_list(curve_name c_n, date d){
return curve(c_n, d, " ".instruments().name();
}

Now, proceed as follows:
- First, attach the first function, called test, to a table.

- Then drag the second function and drop it on the instrument list that corredpan the
instrument _name parameter of the first function.

This will make the instrument list control of the first function dependent on the second function, i.e.,
the chosen curve. It may be necessary to use the Parameters option dialogue to put th@<ona
natural order:

Parameters opticns ‘ ﬁ
Functionz: All Controls:
El E instrurnent_list - 1 =& Common Parameters
- B d-Dae E@ D ate
5B e n-Selectbom @ instrument_list - 1 d
E@ best-1 @ best-1:d
% d - Date [—]EE Select from
Merge | . . _
EE c_n - Benchmark curve (. EE instrument_list -1 ok
i_t - Inztrument; Fill instrument_list - 1 Fieztore | [—]@ [mgtrurnent: Fill instrument_list - 1
----- @ test-1:0n
= EE Benchmark curve
L EE test-1:c_nh

The Parameters options dialogue.

Pager5



(] Table [E=R|ESE =)
Comman parametars L test - 1
Date |2008-08-07 - 0,05
Select from [cpca; -
Instrument |epycyaca= =
Benchmark curve [CERDEPOSWAP _~
Raczke

Reczk

The table after editing the controls.

Fill functions cannot be removed using the Attach/Detach dialog. Instead, open the Parameters
Options dialog and click the right mouse button on a contnak thas a fill attachment. A dregiown

menu appears where you can select Remove fill attachment. Note that fill expressions can be attached
both to auto-generated controls and common controls.

See als®.2for further examples of using fill attachments.

7.4.8 Out-parameters in attached functions

If an attached function has parameters marked as out the treatment in the user interface corresponds
to the treatment within thecode. This means that you can set such a parameter in the function and
the value will appear in the corresponding control in the user interface. This is particularly useful when
initialising controls or when correcting erroneous input values. For example cpuld have a
instrument table where the user is supposed to input a yield. To get an appropriate starting value you
could use the market yield of the instruments. For example you could write the following code:

logical initiated = false;
out vector (ins trument_name) names(vector (instrument)i)=i.name();
out vector(number) price_calc( out vector  (humber) yield_v, vector (instrument) i){

if (linitiated){
yield_v = i.yield()*100;
initiated = true;

}
return  i.set_yield(yield_v/100).clean_price();

}

If you attach these two functions to an instrument table the yields will always be taken from the market
when the workspace is opened but then determined by the user input in the table.

Note that, contrary to standard parameters, the values of-patametersare not stored in the
workspace when it is closed. The reason for this is that, typically, the purpose of tham@umeters is

that you want to initiate the parameters by taking values from a distinct source, such as the real time
data or the database.

See alsd8.6for further examples using out parameters.

Pager6



7.5 Handling calculation order

7.5.1 General rules for calculation order of attachments

In some cases it is important tonderstand in which order Quantlab evaluates functions attached to
graphs or tables to properly get correct results. This is especially true when using global variables and
ensuring that they have been updated before proceeding with other calculationsndigmt on the

global variable.

Ordinary function calls do not have a paefined calculation order. However, void functions receive
special treatment in the evaluation engine. All void functions in a tab are evaluated first by the engine.
This is also trugor multiple expression windows (i.e. all void functions in all expression windows are
evaluated before any other function is evaluated) in the same tab. However, there is no particular
order among void functions, if several void functions are attachethéosame graph, for example.
Therefore, it is often best to use one void function and call the others.

Knowing that the void function evaluates first comes in handy when you need control over any global
variables that need to be prgrocessed. When thioatrol should be extended to the user, in graphs
and tables, the void function can simply be attached to the graph or table as any ordhdmii Q
function.

An example;

number c;  // the global variable availabe to all functions in the expression window
out void f1() //the 6out & keyword exposes the void function to the

¢ = rng.gauss()

out number f2 (number b)

{
}
out number f3 (number Xx)

{
}

return  b+c ;

return X+cC ;

In the example above we assume that all three functions are attathdde same table. This will
ensure that the global variable c always will be refreshed with a new random number before f2 and f3
are evaluated.

When there comes new input data to an attachment that currently is being evaluated (from the user
interface orfrom the real time source), all this input data will be used in the next call of the function.
This means that there is no queue of function calls of the same function attachment, so each
attachment can only have three states:

- Evaluation completed

- Evaluatbn in progress

- Waiting for evaluation, due to all new input data.
The two second cases can occur at the same time.

Often it can be useful to do some initialisations before all other calculations, i.e., on opening the
workspace. This can be done using dglvariable that is set by a function that does all initialisations:

logical init_all(){

/I Initialization code
return  true;

Pager7



logical g_init = init_all;

A special case in the evaluation order is that in an instrument table, the function calculaging th
instrument vector has to be evaluated first. This is because it is impossible to do any calculations at all
before the vector is welllefined. See alsd.2.3and7.5.3

7.5.2 Performance optimisation

An important application of the calculation order in combination with global variables is the case
where you have a timeonsuming caldation, for example involving time series data, and some faster
calculations, for example involving rdahe data, in the same graph or table. In such a case you could
separate your calculations so the time series calculations do not involve arymealata and put

them in a void function that puts the result in one or several global variables. Then you can use ordinary
functions to display the values of the global variables and combine them withimealdata. This will
reduce the number of recalculains of the time consuming part to only the cases when it is necessary,
i.e., when the user has changed any input variable and not each time there istenealpdate.

Note! In some cases it may be natural to attach a function that, given an instrumeme as a
parameter, retrieves data from a global variable. Then it should be noted that this function will not be
updated in real time if it doesn't also create an instrument. The real time engine is only triggered
whenever an instrument (or a curve)dgeated using today's date.

7.5.3 Calculation order in the instrument table

The Instrument table has a built initiation of the vector of instruments prior to the evaluation of
both the void and ordinary functions. Any change in curve, quote side, or diitégger a reinitiation
of the vector, then evaluate any void functions, and last evaluate all ordinary functions.

This is also true for the case when the instrument vector is defined through aleieed function as
described ir7.2.3

7.5.4 Using buttons to trigger calculations

Normally the calculation of an attached function is triggered by a change in-imeatjuote or by
pressing the Recalc button (explicitly, or implicitly when pressing Enter after having changed a value in
a control or in a table). It is also possiblelétting an attached function be evaluated only when a
button is pressed.

To get a function controlled by a button, first attach the function to a view (a graph or a table), then,
in the workspace browser, rigitick on the attachment and choose A&kcalc button. A button
appears for which you can set a caption text.

Whenever this button is pressed the attached function will be evaluated using the lateginneal
quotes. This is the only way that the calculation of this particular attachment witlitieted. Hence,
it will not be automatically updated by changes in the real time source.

Pager8



8/l asS audzZRASa
The following case studies are aimed to illustrate common financial calculation subjects. Most of the

examples are programmed using the short form fimmctions, i.e., ongow functions. Each example
corresponds to a workspace file in the fold€uantlah examplesworkspaces.

8.1 Producing a zero coupon curve: zero_curve.glw

In this example we will take a set of instrumeg yield curve; and calculateero coupon rates using
the bootstrap method. The zero coupon rates are then plotted against time to maturity in order to
produce a zero coupon curve.

Here is a function that solves the problem:

out series  <number>(number) zero_curve(curve_name c_n, date tr ade_d){
fit_result f_r = bootstrap(curve(c_n, trade_d));
return series (t: 0.1, 10, 0.1; f_r.zero_rate(0, t, RT_EFFECTIVE));

}

In the first line of code of this function, we create a curve using a curve name and a trade date. Then
we apply the bootstragunction which gives us a fit_result object z_c which contains all information
on the zero coupon rates. What Quantlab does when it performs this row, is that it searches in the
database for a curve with the curve name stored in the parameter c_n foddlke trade_d. It then
collects all static data for the instruments on the curve on the specified trade date and performs a zero
coupon calculation using the bootstrap method.

In order to plot a graph, we have to produce a series of zero coupon ratesweet@ke a maturity
range from 0.1 years to 10 years with a step size of 0.1, and calculate the zero coupon rate for each
maturity using the method zero_rate of the fit_result object.

We have chosen to plot the effective zero coupon rate. The zero corgterstarts at the trade date
and matures at t years later. As there is no forward start the first argument of zero_rate is set to 0.

The function can be attached to a graph. Although there are no common parameters, you can rename
the parameters by clickinthe right mouse button, choosing parameters options and then create two
controls; one for the trade date, one for the curve name. For more information about merging
parameters, se&.3.2

Depending on what curves are defined in your database, you can choose a curve and get a zero coupon
curve based on that collection of instruments.

Pager9



R = =

[ File Edit VMiew Inset Graph Tools Window Help

x
Bl Workspace Graph . ][] ]

=B Graph - Comman paramatess
2| radel

- Tab Parsmeters Trade [rodey =

| Graph ane [GEGovr 2]

: o zero_curve-1 5000 B SEKGOVT

i Recslc .

=] Expression
B Tab Porameters

{Z] Expression

\—x

TR e [2le L. L= w1712 4

[ Function [ view [ Time Description

Warmings | Compiler
Graph Expressi.

[m—[ NomM[ 4

Correctly applying the example should give a workspace withgliele and date controls.

Pages0



8.2 Zero coupon curve with blending and choice of methods:
zero_curve2.glw

The previous case can easily be extended with the option to choose the zero coupon method. Let's say
you will give the endiser the possibility to choose beégn the bootstrap, Nelsefsiegel, and
Maximum Smoothness methods. Then the zero coupon function in the previous case can be extended
like this:

out series  <number>(number) zero_curve(curve_name c_nl, curve_name c_n2, date
trade_d, string method, quote_side gs){
curve ¢ = blend_curves_depo_swap(curve(c_nl, trade_d, gs), curve(c_n2,
trade_d, qs));
fit_result f_r;
if (method=='Bootstrap’)
f_r = bootstrap( c);
elseif (method =='Nelson - Siegel’)
f_r =fit(c, ns(), WS_PVBP, 2);
elseif  (method == 'Max Smoothness')
f_r = max_smooth(c, SMOOTH_C?2);
else
throw(E_INVALID_ARG, 'Unknown zero coupon method");

return series (t: 0.1, 10, 0.1; f_r.zero_rate(O, t, RT_EFFECTIVE));
}

We have also taken the opportunity to extend the curve creation with a blending function: This
function will take a curve with short maturities and a curve with long maturities and merge them. If
there are overlapping instruments, theyillsbe removed from the short curve. For other blending
options, see the Function browser. The parametegives the possibility to choose among atefined
quote sides (bid, ask or mid).

Instead of letting the user manually type the strings for the zmmopon methods we can create a list
from which it is possible to make a selection:

out vector  (string) methods() = ['Bootstrap’, ‘Nelson - Siegel', 'Max SmoothnessT;

This vector function can then be attached to the string control in the user interfacectine¢sponds
to the parametermethod .

=101.x]

e ] 5.000 |
wade d foday o] 4000 }
method [ Smoothness =]

e 3000 |

—Zero_cufwe - 1

2000 +

100

—Recalc

200 000 200 400 600 200 10.00 1200 14,00

The Maximum smoothness method applied to a blending of two curves.

PageS1



8.3 A zero coupon studio: zero_studio.glw

This example is a more elaborate version of the preceding zero coupon workspaces. We will not go
through thecode row by row but give some general comments.

The most important calculation is done in the void function calc_zero which sets the global fit_result
variable g_f_r to the result of a zero coupon estimation of the chosen type. Then there are a number
of functions that use the global variable to produce the zero coupon curve, the forward curve or zero
coupon implied yields for the bonds. As the void function is evaluated first, all other functions will

always use the global variable when it is updated wWighmost recent real time quotes and user input.

However, if a function only presents data that is based on a global variable, it will not be triggered by
real time updates, therefore the first row of these functions creates a curve of the relevant
instruments. If today's date is chosen this will make these functions triggered by real time updates in
any of the instruments on the curve.

In the user interface, we have merged parameters for all functions in the tab parameter pane. For the
zero coupon modeland the weighting methods we have used-diftachments on the merged
controls.

PageB82



8.4 Pricing a bond relative to a benchmark curve: bond_pricing.qglw

Often fixedincome instruments are priced relative to a benchmark. Either this can be a single
instrument whereyou simply calculate the yield spread between the two instruments, or a whole
curve. In the latter case you have to calculate the corresponding zero coupon benchmark curve and
then price all caslifiows of the selected instruments using the zero coupongaléis gives a fair value

of the bond, if it were an instrument on the benchmark curve. The spread between the corresponding
zero-curve implied yield and the market yield is therefore an accurate measure of the spread to the
benchmark curve.

In this examfe we will produce a graph of the daily spread between a bond and a benchmark curve
during a chosen time period.

As in exampl&.1, we must first create a curve usingarve name and a trade date. Then we apply
the bootstrap function which gives us a fit_result object which contains all information on the zero
coupon rates:

fit_result zero_rate_structure(curve_name c_n, date trade_d)

{
}

return  bootstrap(curve(c_n, trade _d);

When this function is calculated, Quantlab searches in the database for a curve with the curve name
stored in the parametec_nfor the datetrade_d It then collects all static data for the instruments on

the curve on the specified trade date and performs a zero coupon calculation using the bootstrap
method.

Now, we want to calculate the spread between the bond and the benchmark. The followirgf line
code solves that problem:

return  i.yield() - i.yield(zero_rate_structure(c_n, trade_d));

The function first retrieves the market yield of the bond and then subtracts the yield implied from the
zero coupon function. Note that this yield is calculataahirthe sum of the present values of all cash
flows of the bond, valued using the zero coupon curve.

Finally, we want to plot this spread for each day during a chosen time period:

out series  <date>(number) spread_series(curve_name c_n, instrument_name i_n, date
from_d, date to_d)
{

return series (d: from_d, to_d ; yield_spread(c_n, instrument(i_n, d), d)) ;

}

Here, we construct a series from the ddtem_dto the dateto_d and call our spread function for
each day in the date range.

On each day in the darange the following steps are performed:
9 Retrieve the instrument data from the database.

1 Retrieve the curve data from the database (what instruments are on the curve on that specific
date).

Retrieve the instrument data for each instrument on the curve.
Retrieve market prices for all instruments above.

Calculate a zero coupon curve (a fit_result).

= =4 -4 -

Calculate the present value of all cafftws of the bond.

Page83



1 Convert the present value to an equivalent zérplied yield, using the calculation method of
the bond.

1 Calculate the spread between the market yield and the Zemglied yield.

band_pricing - Quantiab ===
File Edit View Insert Graph Tools Window Help
> | ] Graph [E=EESB(E>) b
W& Workspace = e}
Graph Common parameters
(2] Grap v [Garme <] W Spread between CAI 568 and SEKGOVT X
2= Graph \ 10,000 ’_
Bench
oF spread_series - 1 SERGONT El L
Expression From [2005-10-22 - ’F
B Tab Parareters To el =] P
= Expression
L spread_series Recakc
Recalc f‘
5000 &
iv
s
F«‘-w-w,m ’01__
0,000 ™
5,000
2006-03-27 2007-01-12 2007-10-29 2008-08-18
x
[ saurce Time | Description -
o ExpressiomiBxpression 2008-0.. (Mo errars)
f  Expression\Expression 20080, (Mo errors)
o ExpressiomiExpression 2008-0.. (Mo erars)
o Expression\Expression 20080 (Mo errors)
A Frnressi 102-1 (Bl errarst =
Warnings Compler |
Graph Expressi..
- — UM

The examplg showing a Swedish mortgage bond spread to the SEKGOVT curve.

Pageg4




































